r-Prozess

r-Prozess

Version vom 16. November 2017, 20:33 Uhr von imported>UvM (→‎Ablauf: Text überarbeitet, Berichtigungen)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Der r-Prozess (r für englisch rapid ‚schnell‘) ist einer der Nukleosyntheseprozesse.

Er ist ein Neutroneneinfangprozess, der bei hohen Neutronen-Dichten und Temperaturen abläuft, im Gegensatz zum langsamen s-Prozess. Dabei werden durch einen hohen Neutronenfluss instabile neutronenreiche Atomkerne aufgebaut, die rasch zu stabilen neutronenreichen Kernen der schweren Elemente von Eisen bis Blei sowie den instabilen langlebigen Isotopen von Bismut, Thorium, Uran und Plutonium zerfallen.

Ablauf

Der Ort des r-Prozesses ist noch nicht mit Sicherheit bekannt. Zurzeit werden hauptsächlich zwei Prozesse diskutiert: zum einen das Verschmelzen zweier Neutronensterne (Kilonova) und zum anderen Supernova-Explosionen. Als am wahrscheinlichsten gilt, dass der r-Prozess während Supernovae am Ende des Lebenszyklus eines Sterns abläuft. Dabei wird durch die Stoßwelle, die ihren Ausgang am inkompressiblen entarteten Neutronenkern (siehe Neutronenstern) im Zentrum des Sterns nimmt, neutronenreiches Material von dessen Außenbereich mitgerissen und in den Weltraum geschleudert.

Die relativ geringe Häufigkeit von im r-Prozess synthetisierten Elementen setzt jedoch voraus, dass entweder nur ein geringer Anteil von Supernovae diese an den Weltraum abgibt, oder dass jede Supernova nur eine geringe Menge davon abgibt.

Durch den sehr hohen Neutronenfluss (in der Größenordnung von mehr als 10 Trilliarden = 1022 Neutronen pro Quadratzentimeter pro Sekunde) können in Sekundenbruchteilen sehr viele Neutronenanlagerungen an ein und demselben Atomkern stattfinden, insbesondere auch an kurzlebigen Zwischenprodukten, bevor ein radioaktiver β-Zerfall auftritt. Der Prozess wird nur durch drei Faktoren abgebremst:

  1. durch geschlossene Neutronenschalen bei Isotopen mit Neutronenzahlen um N = 50, 82 und 126, korrespondierend mit Massenzahlen A von etwa 70–90, 130–138 beziehungsweise 195–208, bei denen die Wahrscheinlichkeit einer weiteren Neutronenanlagerung sinkt und daher den dafür benötigten Zeitraum vergrößert. Tatsächlich ist die Häufigkeit dieser Isotope etwas erhöht, was als Bestätigung der Theorie des r-Prozesses angesehen werden kann;
  2. bei einer Grenze, an der die Bindungsenergie neu anzulagernder Neutronen Null wird ($ B_{\text{n}}=0 $), so dass kein weiteres Neutron eingefangen werden kann und der Kern erst einen Betazerfall „abwarten“ muss;
  3. durch die Abnahme der Kernstabilität mit zunehmender Massenzahl. Der r-Prozess endet deshalb bei Kernen, bei denen mit kurzer Halbwertszeit die spontane Kernspaltung eintritt, die also von selbst in zwei leichtere Kerne zerfallen. Dies ist bei Massenzahlen um A = 260 der Fall, etwa im Gebiet der Elemente Curium bis Rutherfordium.

Bei jeder Neutronenanlagerung wird Energie in Form von Gammaquanten frei. Massenzahl A und Neutronenzahl N erhöhen sich jeweils um 1 und ein neues Isotop desselben Elements entsteht.

Bei den anschließenden β-Zerfällen der instabilen Isotope wird je ein Neutron durch Aussendung eines Elektrons e und eines Elektron-Antineutrinos $ {\overline {\nu }}_{\text{e}} $ in ein Proton umgewandelt. Dadurch entsteht ein Atomkern eines anderen Elements mit gleicher Massenzahl, aber um 1 erhöhter Ordnungszahl Z (Protonenzahl) und um 1 erniedrigter Neutronenzahl N; das Atom „wandert“ also im Periodensystem.

Siehe auch

Literatur

  • Klaus Blaum, Hendrik Schatz: Kernmassen und der Ursprung der Elemente. Wie die Welt entstanden ist und was Präzisionsmessungen an kurzlebigen Radionukliden uns darüber verraten. Physik-Journal 5 (2006), Nr. 2, S. 35
  • Margaret Burbidge, Geoffrey Burbidge, William Alfred Fowler, Fred Hoyle: Synthesis of the Elements in Stars, Rev. Mod. Phys. 29 (1957) 547
  • C. E. Rolfs, W. S. Rodney: Cauldrons in the Cosmos, Univ. of Chicago Press, 1988
  • Heinz Oberhummer: Kerne und Sterne, Barth, 1993

News mit dem Thema r-Prozess