In einer Ionenfalle werden Ionen, also elektrisch geladene Atome oder Moleküle, mittels elektrischer und magnetischer Felder festgehalten. Abhängig von Art und Stärke der einwirkenden Felder kann man gezielt Ionen einer bestimmten Masse „gefangen“ halten. Alternativ kann man sämtliche Ionen in der Falle vorrätig halten und durch Veränderung der Felder Ionen einer bestimmten Masse entnehmen und so den Ionen-Vorrat gezielt massenaufgetrennt scannen.
1953 entwickelte der Physiker Wolfgang Paul die Theorie, Ionen in einem elektrischen, oszillierenden Quadrupolfeld zu speichern. Das Konzept der Paul-Falle war für Analytiker nur von untergeordnetem Interesse, da nur Ionen eines bestimmten m/z-Verhältnisses speicherbar waren.
1983 wurde die Methode durch George Stafford (1983) erweitert, was zum Durchbruch dieser Technologie in der analytischen Chemie führte, da nun die Speicherung aller Massen und ein selektives Entnehmen möglich wurden.
Die Speicherung der Ionen erfolgt im Vakuum und ohne Kontakt zu einer Oberfläche. Es gibt verschiedene Ausführungen der Ionenfalle; die am häufigsten verwendeten sind die Paul-Falle und die Penning-Falle.
In der Paul-Falle wird ein zeitlich veränderliches elektromagnetisches Feld verwendet, um Ionen festzuhalten. Hat dieses Feld die Form eines Quadrupols, wird die Falle auch als Quadrupol-Falle bezeichnet. Die Paul-Falle ist eng verwandt mit dem Quadrupol-Massenspektrometer.
Eine andere Form der Ionenfalle ist die Penning-Falle. Bei dieser führt eine Kombination von zeitlich konstantem elektrischem Feld und ebenfalls zeitlich konstantem Magnetfeld zu einer Speicherung der Ionen.
Etliche andere Typen existieren. In einer Electron Beam Ion Trap wird zum Beispiel ein stark fokussierter Elektronenstrahl in Kombination mit statischen elektrischen Feldern verwendet. Die Elektrostatische Ionenstrahlfalle (Electrostatic Ion Beam Trap) verwendet ausschließlich elektrostatische Felder, um einen Strahl von Ionen bei vergleichsweise hoher kinetischer Energie zu speichern.
Ionenfallen haben Anwendungen in der Massenspektrometrie, in der optischen Präzisions-Spektroskopie und beim Bau von Quantencomputern.
An Endkappen- und Ringelektrode liegt eine Wechselspannung im Radiofrequenzbereich an. Bei richtiger Spannung werden die Flugbahnen der Massen instabil, und nur die Ionen mit genau passendem m/z-Verhältnis bleiben in der Falle, dies nutzt man zur Ionenselektion.
Mit Ionenfallen-Massenspektrometern können mehrfache Stoßexperimente nacheinander durchgeführt werden. Erhaltene Fragmente können selektiert und gezielt weiter fragmentiert werden. Das Signal-Rauschverhältnis ist besser, entsprechend empfindlich sind die Geräte.