Matrixelement (Physik)

Matrixelement (Physik)

Version vom 22. Oktober 2017, 14:09 Uhr von imported>Acky69 (zus. Links (u.a. auf Matrix))
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Icon tools.svg
Dieser Artikel wurde den Mitarbeitern der Redaktion Physik zur Qualitätssicherung aufgetragen. Wenn du dich mit dem Thema auskennst, bist du herzlich eingeladen, dich an der Prüfung und möglichen Verbesserung des Artikels zu beteiligen. Der Meinungsaustausch darüber findet derzeit nicht auf der Artikeldiskussionsseite, sondern auf der Qualitätssicherungs-Seite der Physik statt.

In der Quantenmechanik werden physikalische Größen oder Prozesse durch Operatoren wiedergegeben, wobei jedem Operator im Hilbertraum der Zustandsvektoren eine lineare Abbildung entspricht. Als Symbol für den Operator wird oft der Buchstabe für die physikalische Messgröße verwendet und mit einem Zirkumflex versehen, z. B. für die x-Koordinate das Symbol $ {\hat {x}} $. Prominente Ausnahme ist $ {\hat {H}} $ für den Hamilton-Operator, der die Energie E repräsentiert.

Sind Zustandsvektoren $ \vert \phi _{n}\rangle $ mit $ (n=1,2,\dots ) $ gegeben, die eine orthonormale Basis des Hilbertraums bilden, so kann der Operator $ {\hat {O}} $ vollständig wiedergegeben werden durch eine Matrix mit den Elementen $ O_{mn}:=\langle \phi _{m}\vert {\hat {O}}\vert \phi _{n}\rangle $. Das Matrixelement $ O_{mn} $ besagt, mit welcher Komponente der Basisvektor $ \vert \phi _{m}\rangle $ in dem Vektor enthalten ist, der durch Anwendung von $ {\hat {O}} $ auf den Basisvektor $ \vert \phi _{n}\rangle $ entstanden ist.[1]

Darüber hinaus wird der Begriff Matrixelement allgemein verwendet, wenn mit zwei Zustandsvektoren $ \vert \phi \rangle $ und $ \vert \psi \rangle $ die Größe $ \langle \phi \vert {\hat {O}}\vert \psi \rangle $ gebildet wird. In Fermis Goldener Regel z. B. werden für die beiden Zustände der Anfangszustand und der beobachtete Endzustand eines bestimmten Prozesses gewählt, wobei weder eine ganze Basis spezifiziert wird noch die beiden Zustände überhaupt orthogonal sein müssen.

Einzelnachweise

  1. Georg Joos: Lehrbuch der Theoretischen Physik. 15. Auflage. AULA-Verlag, Wiesbaden 1989, ISBN 3-89104-462-3, S. 576.