Ein quantenmechanischer Zustand ist die Beschreibung des Zustands eines physikalischen Systems nach den Regeln der Quantenmechanik. Sie unterscheidet sich grundlegend von der Beschreibung des Zustands nach den Regeln der klassischen Physik, damit die an quantenphysikalischen Systemen gemachten Beobachtungen erfasst werden können. Zu den verschiedenen Interpretationen der Quantenmechanik gehören unterschiedliche Zustandsbegriffe. Dieser Artikel behandelt den Zustandsbegriff der weit verbreiteten Kopenhagener Interpretation.
Im Gegensatz zum klassischen Begriff legt der Zustand in der Kopenhagener Interpretation der Quantenmechanik nicht für jede am System durchführbare Messung einen mit Sicherheit zu erwartenden Messwert fest, sondern nur für jeden möglichen Messwert die Wahrscheinlichkeit
Die sogenannte „Präparation“ eines Systems in einem bestimmten Zustand erfolgt durch die gleichzeitige Messung eines maximalen Satzes kommensurabler physikalischer Größen.[1] Nach dieser Messung befindet sich das System in einem wohldefinierten gemeinsamen Eigenzustand aller dieser Messgrößen, sodass diese bestimmte Werte besitzen. Wenn das System nicht schon vorher in einem solchen gemeinsamen Eigenzustand war, verursacht die Messung schlagartig eine Zustandsreduktion, auch Kollaps genannt, sodass danach alle anderen möglichen Messwerte dieser Größen die Wahrscheinlichkeit Null haben. Die Zustandsreduktion ist kein physikalischer Vorgang, sondern beschreibt die durch die Messung eingetretene genauere Information des Beobachters.[2] Zwischen zwei Messungen ist die Zeitentwicklung des Zustands durch eine Bewegungsgleichung deterministisch festgelegt; im nichtrelativistischen Fall durch die Schrödinger-Gleichung, im relativistischen, abhängig von Spin und Masse des Teilchens, durch die Klein-Gordon-Gleichung (Spin 0), die Dirac-Gleichung (massiv, Spin ½), die Weyl-Gleichung (masselos, Spin ½), die Proca-Gleichung (massiv, Spin 1) oder die Maxwell-Gleichungen (masselos, Spin 1).
Mathematisch wird der quantenmechanische Zustand meist durch einen normierten Zustandsvektor im Hilbertraum beschrieben. Mithilfe einer Basis des Hilbertraums mit diskretem Index kann dieser Zustandsvektor als Linearkombination der Basisvektoren geschrieben werden, oder bei einer Basis mit kontinuierlichem Index als Wellenfunktion. Zu jedem der möglichen Messwerte einer physikalischen Größe besitzt der Zustandsvektor mindestens eine Komponente. Die Stärke einer Komponente (genauer: das Betragsquadrat ihrer Amplitude) bestimmt die Wahrscheinlichkeit, mit der der betreffende Messwert als Ergebnis einer Messung auftritt.
Die Zuordnung von Zustand und Zustandsvektor ist nicht umkehrbar eindeutig, denn Zustandsvektoren, die sich nur durch einen konstanten komplexen Phasenfaktor unterscheiden, beschreiben denselben physikalischen Zustand. Die Linearkombination der Zustandsvektoren zweier Zustände ist selbst ein möglicher Zustandsvektor; er beschreibt einen von den beiden überlagerten Zuständen physikalisch verschiedenen Zustand, wobei es auch auf die relative komplexe Phase der beiden überlagerten Zustandsvektoren ankommt. Die theoretischen Grundlagen der Beschreibung als Linearkombination wurden 1925 von Werner Heisenberg in der Matrizenmechanik entwickelt, die Beschreibung als Wellenfunktion in der Orts- oder Impulsbasis 1926 von Erwin Schrödinger in der Wellenmechanik. Die beiden Beschreibungen beruhen auf derselben tiefer liegenden mathematischen Struktur. In dieser wird ein Zustand als eine Abbildung aufgefasst, die jedem der Operatoren, die eine Messgröße darstellen, eine reelle Zahl zuordnet. Diese Zahl gibt den Erwartungswert der möglichen Messergebnisse an, die bei einzelnen Messungen dieser Größe in diesem Zustand erhalten werden können. Dies wurde 1931 von John von Neumann ausgearbeitet.
Bei unvollständiger Präparation eines Anfangszustands oder in der Quantenstatistik wird zwischen reinen und gemischten Zuständen unterschieden. Zu deren Beschreibung muss der Zustandsvektor zum Dichteoperator (auch Zustandsoperator genannt) erweitert werden. Dieser Formalismus vermeidet auch die eben genannte Unbestimmtheit der komplexen Phase, erschwert aber die manchmal für die Anschauung hilfreiche Vorstellung einer Wellenfunktion.
Die Einführung von Wahrscheinlichkeiten verschiedener Ergebnisse anstelle einer eindeutigen Voraussage bedeutet eine grundsätzliche Abkehr von der klassischen Physik. Dort ist nämlich mit der Angabe des momentanen Systemzustands das Ergebnis jeder möglichen Messung eindeutig festgelegt (immer fehlerfreie Messung vorausgesetzt). Dies trifft für makroskopische Systeme (z. B. aus dem Alltag) im Allgemeinen sehr gut zu. Beispielsweise lassen sich einer Schrotkugel oder einem Sandkorn in jedem Moment mit praktisch eindeutiger Genauigkeit ein bestimmter Ort und eine bestimmte Geschwindigkeit zuschreiben.
Für immer kleinere Systeme wird dies jedoch zunehmend falsch, für ein Ensemble quantenmechanischer Teilchen[3] ist es ausgeschlossen. Die streng gültige Heisenbergsche Unschärferelation von 1927 besagt nämlich: liegt der Aufenthaltsort eindeutig fest, dann kann eine Messung der Geschwindigkeit mit gleicher Wahrscheinlichkeit jeden beliebigen Wert ergeben, und umgekehrt; d. h. zu jeder Zeit kann nur eine der beiden Größen eindeutig bestimmt werden. Diese Unbestimmtheit lässt sich auch durch das präziseste Präparieren des Systemzustands nicht beseitigen. Sie ist mathematisch rigoros, relativ einfach zu beweisen[4] und bildet eine zentrale begriffliche Grundlage der Physik.
Zusätzliche Unsicherheit über das zu erwartende Messergebnis entsteht, wenn der Zustand des Systems nicht eindeutig festgelegt ist. Das gilt z. B. für den häufigen Fall, dass das beobachtete System aus einer Anzahl gleichartiger Systeme herausgegriffen wird, die nicht alle im selben Zustand präpariert sind. Die unterschiedlichen Zustände, in denen sich das beobachtete System (mit möglicherweise unterschiedlicher Wahrscheinlichkeit) befinden kann, bilden dann ein Zustandsgemisch.
Hier ließe sich die Unsicherheit über die zu erwartenden Messergebnisse verringern, indem nur Systeme im selben Zustand zur Messung ausgewählt werden. Zur Verdeutlichung des Unterschieds zum Zustandsgemisch wird ein eindeutig präparierter Zustand gelegentlich auch als reiner Zustand bezeichnet.
Im Folgenden bedeutet Zustand hier immer reiner Zustand.
Ein Zustand, in dem für eine bestimmte Messgröße der zu erwartende Messwert eindeutig festliegt, heißt Eigenzustand zu dieser Messgröße. Beispiele sind
Die Beispiele 1 und 2 sind streng genommen (wegen einer mathematischen Subtilität: des Vorliegens eines „kontinuierlichen Spektrums“) nur im Grenzfall zulässig (beim Beispiel 2 etwa im „monochromatischen Grenzfall“ eines unendlich ausgedehnten Wellenpakets, während das Beispiel 1 daraus durch eine Fouriertransformation erhalten wird). Beide Beispiele spielen eine bedeutende Rolle in der theoretischen Beschreibung.[5]
Beispiel 3 ist ein Zustand, in dem eine physikalische Größe (nämlich die Energie) einen bestimmten Wert hat, während sowohl für den Ort als auch für den Impuls nur Wahrscheinlichkeiten für verschiedene Messergebnisse angegeben werden können (für den Ort z. B. durch das Orbital, für den Impuls durch das Betragsquadrat der Fouriertransformierten der betreffenden Ortswellenfunktion).
Für ein Teilchen in Gestalt eines Massepunkts ist in der klassischen Mechanik der Zustand durch den Ort und den Impuls gegeben, also durch einen Punkt im sechsdimensionalen Phasenraum. Da bei Teilchenstrahlen aber auch Interferenzeffekte beobachtet werden (Welle-Teilchen-Dualismus), muss auch die Möglichkeit, dass die Superposition (oder Überlagerung, Linearkombination mit komplexen Faktoren) mehrerer Zustände einen möglichen Zustand bildet, zugelassen werden (siehe Materiewellen). So ist jeder Zustand, für den die Quantenmechanik zu einer Messgröße mehrere mögliche Messwerte mit je eigenen Wahrscheinlichkeiten voraussagt, eine Superposition derjenigen Zustände, die die zu diesen Messwerten gehörigen Eigenzustände sind. Die Wahrscheinlichkeit, einen bestimmten dieser Eigenwerte als Messergebnis zu erhalten, ist durch das Betragsquadrat seiner Wahrscheinlichkeitsamplitude festgelegt. Die Wahrscheinlichkeitsamplitude ist der (im Allgemeinen komplexe) Faktor, mit dem der betreffende Eigenzustand in dieser Superposition vorkommt.
Es gibt keinen prinzipiellen Unterschied zwischen den Eigenschaften, Superpositionszustand oder Basis- oder Eigenzustand zu sein: Jeder Zustand eines Systems kann als Basiszustand einer geeignet gewählten Basis betrachtet werden, aber auch als Superpositionszustand von den Basisvektoren einer anderen Basis. Jeder Zustand kann mit jedem anderen Zustand desselben Systems überlagert werden, und jeder Zustand kann als Überlagerung anderer Zustände dargestellt werden. Zustände, die als Superposition definiert wurden, sind also auch reine Zustände im obigen Sinn. Gelegentlich werden sie jedoch ungenau als gemischte Zustände angesprochen, was aber vermieden werden sollte, weil Verwechslungen mit dem Begriff Zustandsgemisch auftreten könnten.
Der quantenmechanische Phasenraum wird durch die Möglichkeit der Superposition erheblich mächtiger als der Phasenraum der klassischen Mechanik für dasselbe System. Als Maß dieses erweiterten Raumes gilt in der statistischen Quantenphysik aber nicht die Größe dieser Menge selbst, sondern ihre Dimension;[6] das ist die kleinstmögliche Zahl der Zustände, aus denen sich durch Superposition alle überhaupt möglichen Zustände des Systems ergeben können. Innerhalb dieser kleinstmöglichen Teilmenge ist demnach keiner der Zustände als Superposition der anderen darstellbar, deshalb sind sie linear unabhängig und bilden eine Basis des ganzen Phasenraums.
Im Vergleich mit der Zustandsdichte in der klassischen statistischen Physik zeigt sich, dass jeder quantenmechanische Zustand einer solchen Basis das „Phasenraumvolumen“
Im mathematischen Formalismus der Quantenmechanik und Quantenfeldtheorie ist ein Zustand eine Abbildungsvorschrift, die jeder physikalischen Größe ihren Erwartungswert zuordnet. Diese Definition schließt Zustandsgemische mit ein. Da die physikalischen Größen durch lineare Operatoren dargestellt werden, die eine Untermenge einer C*-Algebra bilden, ist ein Zustand
Die Menge dieser Zustände ist eine konvexe Menge, das heißt, wenn
Jedem Zustand kann mittels der GNS-Konstruktion eine Hilbertraum-Darstellung
wobei
Für die mathematische Darstellung des oben physikalisch definierten reinen Zustands eignen sich zwei Formen, die zueinander äquivalent sind:
Der Zustandsvektor
geschrieben werden kann, wobei
mit
mit dem Kronecker-Delta
mit der unendlichdimensionalen Einheitsmatrix
mit der Dirac-Distribution
Um in der Schreibweise nicht zwischen kontinuierlichen und diskreten Basen unterscheiden zu müssen, wird teilweise das Symbol ⨋ verwendet.
Wenn der Zustandsvektor in einer Basis dargestellt wird, dann zumeist in der Eigenbasis eines hermiteschen Operators, der mit einer physikalischen Messgröße identifiziert wird. Die Eigenzustände eines solchen Operators werden häufig mit dem Formelzeichen der entsprechenden physikalischen Größe bezeichnet:
Damit die Wellenfunktion nach der Bornschen Regel als Wahrscheinlichkeitsamplitude aufgefasst werden kann, ist es nötig, den Zustandsvektor zu normieren. Das heißt, für einen physikalischen Zustand muss
gelten. Allerdings legt dies den Vektor
Die Wellenfunktionen
Eine messbare physikalische Größe wird durch einen Operator dargestellt, der im Hilbertraum eine lineare Transformation bewirkt. Messgröße
Da alle möglichen Messergebnisse reelle Zahlen sind, muss der Operator hermitesch sein, d. h. folgende Bedingung erfüllen:
Bei einem Zustand, der nicht Eigenzustand des betreffenden Operators ist, können Messergebnisse nicht sicher, sondern nur mit Wahrscheinlichkeiten vorhergesagt werden. Diese Wahrscheinlichkeiten berechnen sich für jeden Eigenwert als Betragsquadrat aus dem Skalarprodukt des betreffenden Eigenvektors der Messgröße mit dem Zustandsvektor des Systems:
Nach der Messung ist der Zustandsvektor auf den zum entsprechenden Eigenwert zugehörigen Unterraum kollabiert, das heißt
Dadurch ist gleichzeitig das System im Eigenzustand
Als Erwartungswert
Linearkombinationen zweier Zustandsvektoren, also z. B.
Ein Zustandsgemisch, in dem sich das System mit Wahrscheinlichkeit
Im Gegensatz zur kohärenten Superposition bleibt der Dichteoperator unverändert, wenn die im Gemisch vertretenen Zustände
Der Erwartungswert einer Messung der Observable
Dies kann auch als Spur des Operators
Die letzte Gleichung hat den Vorzug, dass sie gleichermaßen für Gemische und für reine Zustände gilt. (Bei einem reinen Zustand
Der Dichteoperator wird auch als „Zustandsoperator“ bezeichnet.
In der Quantenmechanik und der Quantenstatistik wird zwischen reinen Zuständen und Zustandsgemischen unterschieden. Reine Zustände stellen den Idealfall einer maximalen Kenntnis der beobachtbaren Eigenschaften (Observablen) des Systems dar. Häufig ist aber nach der Präparation oder aufgrund von Messungenauigkeiten der Zustand des Systems nur unvollständig bekannt (Beispiel: der Spin des einzelnen Elektrons in einem unpolarisierten Elektronenstrahl).[13] Dann können den verschiedenen möglicherweise vorkommenden reinen Zuständen
Ein reiner Zustand entspricht einem eindimensionalen Unterraum (Strahl) in einem Hilbertraum. Die zugehörige Dichtematrix
Charakteristische Merkmale dieser Zustandsbeschreibung sind die Superponierbarkeit („Kohärenz“) der reinen Zustände und das daraus folgende Phänomen der Quantenverschränkung, während bei den Zustandsgemischen die Beiträge der verschiedenen beteiligten Zustände inkohärent summiert werden.
Das Ergebnis von Messungen an einem Quantensystem ergibt bei Wiederholung an einem exakt gleich präparierten System auch bei reinen Zuständen eine nicht-triviale Verteilung von Messwerten, die in der Quantenstatistik zusätzlich (inkohärent! [14]) mit den
Für das Ergebnis der Messungen ist also im Unterschied zur klassischen Physik selbst bei reinen (also vollständig bekannten) quantenmechanischen Zuständen nur eine Wahrscheinlichkeit angebbar (deshalb heißt es im Folgenden nicht das Resultat, sondern das zu erwartende Resultat, s. u.). Für Zustandsgemische gilt wegen der
Also selbst das zu erwartende Resultat des Ausgangs einer einzelnen Messung kann nur in Spezialfällen (etwa
d. h., dass jetzt nicht die zu den Projektionsoperatoren gehörigen Kets superponiert werden, sondern die Projektionsoperatoren selbst mit Wahrscheinlichkeiten versehen werden.
Insgesamt gilt also:
(Wenn auch die
Die Informationsentropie des Zustandes oder die mit der Boltzmannkonstante multiplizierte Von-Neumann-Entropie ist ein quantitatives Maß für die Unkenntnis, die hinsichtlich der möglichen Aussage über das Vorliegen eines bestimmten reinen Zustands besteht. Die Von-Neumann-Entropie,