Die Weyl-Gleichung der Teilchenphysik, benannt nach Hermann Weyl, ist die Diracgleichung für masselose Teilchen mit Spin 1/2. Sie wird bei der Beschreibung der schwachen Wechselwirkung verwendet. Entsprechend heißen Fermionen, die diese Gleichung erfüllen, Weyl-Fermionen.
Die Darstellung der Lorentzgruppe auf Dirac-Spinoren ist reduzibel. In einer geeigneten Darstellung der Dirac-Matrizen, der Weyl-Darstellung, transformieren die ersten beiden und die letzten beiden Komponenten der 4er-Spinoren getrennt, weshalb sie auch als Bispinoren bezeichnet werden:
Die 2er-Spinoren $ \Psi _{L} $ und $ \Psi _{R} $ sind die links- und rechtshändigen Weyl-Spinoren. Sie sind die Eigenzustände des Chiralitätsoperators $ \gamma ^{5} $, wenn man ihn in der Weyl-Darstellung schreibt.
Sie werden in der Diracgleichung für ein freies Spin-1/2-Teilchen durch die Masse $ m $ gekoppelt:
Hierbei ist $ \sigma ^{\mu }={\begin{pmatrix}\sigma ^{0}&{\vec {\sigma }}\end{pmatrix}} $ und $ {\bar {\sigma }}^{\mu }={\begin{pmatrix}\sigma ^{0}&-{\vec {\sigma }}\end{pmatrix}} $, wobei $ {\vec {\sigma }} $ die drei Pauli-Matrizen sind und $ \sigma ^{0} $ die zweidimensionale Einheitsmatrix.
Verschwindet die Masse ($ m=0 $), entkoppelt die vierdimensionale Dirac-Gleichung in zwei zweidimensionale Gleichungen für den links- und den rechtshändigen Spinor:
Zur Beschreibung der elektroschwachen Wechselwirkung ist wichtig, dass die links- und rechtshändigen Spinoren unterschiedlich, aber Lorentz-kovariant, an Vektorfelder koppeln können (chirale Kopplung). Die Kopplung entsteht, indem die Ableitungen durch kovariante Ableitungen ersetzt werden:
Dabei bezeichnen
Die Eichgruppe kann für links- und rechtshändige Teilchen verschieden gewählt werden, ohne dass die Lorenz-Kovarianz dadurch beeinträchtigt wird.