Die Weyl-Gleichung der Teilchenphysik, benannt nach Hermann Weyl, ist die Diracgleichung für masselose Teilchen mit Spin 1/2. Sie wird bei der Beschreibung der schwachen Wechselwirkung verwendet. Entsprechend heißen Fermionen, die diese Gleichung erfüllen, Weyl-Fermionen.
Die Darstellung der Lorentzgruppe auf Dirac-Spinoren ist reduzibel. In einer geeigneten Darstellung der Dirac-Matrizen, der Weyl-Darstellung, transformieren die ersten beiden und die letzten beiden Komponenten der 4er-Spinoren getrennt, weshalb sie auch als Bispinoren bezeichnet werden:
Die 2er-Spinoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Psi_L und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Psi_R sind die links- und rechtshändigen Weyl-Spinoren. Sie sind die Eigenzustände des Chiralitätsoperators Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \gamma^5 , wenn man ihn in der Weyl-Darstellung schreibt.
Sie werden in der Diracgleichung für ein freies Spin-1/2-Teilchen durch die Masse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m gekoppelt:
Hierbei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma^\mu = \begin{pmatrix} \sigma^0 & \vec \sigma\end{pmatrix} und $ {\bar {\sigma }}^{\mu }={\begin{pmatrix}\sigma ^{0}&-{\vec {\sigma }}\end{pmatrix}} $, wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec \sigma die drei Pauli-Matrizen sind und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sigma^0 die zweidimensionale Einheitsmatrix.
Verschwindet die Masse (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m = 0 ), entkoppelt die vierdimensionale Dirac-Gleichung in zwei zweidimensionale Gleichungen für den links- und den rechtshändigen Spinor:
Zur Beschreibung der elektroschwachen Wechselwirkung ist wichtig, dass die links- und rechtshändigen Spinoren unterschiedlich, aber Lorentz-kovariant, an Vektorfelder koppeln können (chirale Kopplung). Die Kopplung entsteht, indem die Ableitungen durch kovariante Ableitungen ersetzt werden:
Dabei bezeichnen
Die Eichgruppe kann für links- und rechtshändige Teilchen verschieden gewählt werden, ohne dass die Lorenz-Kovarianz dadurch beeinträchtigt wird.