Der Ortsoperator gehört in der Quantenmechanik zur Ortsmessung von Teilchen.
Der physikalische Zustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Psi eines Teilchens ist in der Quantenmechanik mathematisch gegeben durch den zugehörigen Vektor eines Hilbertraumes H. Dieser Zustand wird folglich in der Bra-Ket-Notation durch den Vektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\Psi \rangle beschrieben. Die Observablen werden durch selbstadjungierte Operatoren auf H dargestellt.
Speziell ist der Ortsoperator die Zusammenfassung der drei Observablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat{\mathbf{x}} = (\hat{x}_1,\hat{x}_2,\hat{x}_3) , so dass
der Mittelwert (Erwartungswert) der Messergebnisse der j-ten Ortskoordinate des Teilchens im Zustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Psi ist.
Die Ortsdarstellung ist durch die Spektraldarstellung des Ortsoperators definiert. Der Hilbertraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H = L^2(\R^3;\Complex) ist der Raum der quadratintegrierbaren komplexen Funktionen des Ortsraums Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \R^3 , jeder Zustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Psi ist durch eine Ortswellenfunktion $ \psi (\mathbf {x} ) $ gegeben.
Die Ortsoperatoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat{\mathbf{x}} = (\hat{x}_1,\hat{x}_2,\hat{x}_3) sind die Multiplikationsoperatoren mit den Koordinatenfunktionen, d. h. der Ortsoperator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat{x}_j wirkt auf Ortswellenfunktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi(\mathbf{x}) durch die Multiplikation der Wellenfunktion mit der Koordinatenfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x_j
Dieser Operator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hat{x}_j ist als Multiplikationsoperator ein dicht definierter Operator und abgeschlossen. Er ist auf dem Unterraum $ D=\{\psi \in H\,|\,x\cdot \psi \in H\} $ definiert, der in H dicht liegt.
Der Erwartungswert ist
Der Impulsoperator wirkt auf Ortswellenfunktionen (bei geeigneter Wahl der Phasen) als Differentialoperator:
Die Eigenfunktionen des Ortsoperators müssen die Eigenwertgleichung
erfüllen, wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi_{\mathbf{x_0}}(\mathbf{x}) die Eigenfunktion des Ortsoperators zum Eigenwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathbf{x_0} darstellt.
Die Eigenfunktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi(\mathbf{x_0}) zum Ortsoperator entsprechen Delta-Distributionen: $ {\hat {\mathbf {x} }}\delta (\mathbf {x} -\mathbf {x_{0}} )=\mathbf {x_{0}} \delta (\mathbf {x} -\mathbf {x_{0}} ) $
mit der Identität: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f(x)\delta(x -x_0) = f(x_0)\delta(x-x_0)
In der Impulsdarstellung wirkt der Impulsoperator multiplikativ auf Impulswellenfunktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tilde{\psi}(\mathbf{p})