Die Orthotropie (von griechisch {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) „korrekt, senkrecht, gerade stehend“ und {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) „Weg, Art und Weise“) ist eine spezielle Art der Richtungsabhängigkeit eines Werkstoffs/Materials. Orthotrope Materialien wie im Bild haben die folgenden Eigenschaften:
Ein linear elastisches orthotropes Material besitzt maximal neun Materialparameter.
Ein Material ist isotrop, wenn es richtungsunabhängig dasselbe Kraft-Verformungs-Verhalten hat. Bei anisotropen Materialien ist das Kraft-Verformungs-Verhalten von der Belastungsrichtung abhängig. Die Orthotropie ist ein Spezialfall der Anisotropie und enthält ihrerseits die kubische Anisotropie, transversale Isotropie und Isotropie als Sonderfälle.
Viele Konstruktionswerkstoffe sind orthotrop, z. B. technisches Holz, Gewebe, viele Faser-Kunststoff-Verbunde und Walzbleche mit Textur. Kristalle des rhombischen Kristallsystems sind orthotrop[1]:390, Spezialfälle kommen im tetragonalen[1]:391, hexagonalen[1]:393 und kubischen Kristallsystem vor.
Die Richtungsabhängigkeit eines Materials zeichnet sich dadurch aus, dass das Kraft-Verformungs-Verhalten unabhängig (invariant) ist gegenüber nur bestimmten Drehungen des Materials: Bei der Orthotropie sind dies alle 180-Grad-Drehungen um die Orthotropieachsen. Diese Drehungen bilden zusammen mit der Punktspiegelung die Symmetriegruppe des orthotropen Materials.[1]:380
Die Invarianz gegenüber diesen Drehungen des Materials veranschaulichen zwei Experimente an einem Teilchen: Im ersten Experiment bringt man am Teilchen eine bestimmte Kraft auf und misst die resultierende Verformung. Im zweiten Experiment dreht man das Material zunächst nacheinander um beliebige Orthotropieachsen – um 180 Grad. Dann bringt man dieselbe Kraft auf wie im ersten Experiment und misst erneut die Verformung. Bei orthotropem Material wird man im zweiten Experiment dieselbe Verformung messen wie im ersten. Und zwar auch bei nicht-linear elastischem Materialverhalten.
Die Abhängigkeit von den Drehungen des Materials erkennt man, wenn man im zweiten Experiment um einen anderen Winkel als 180 Grad dreht. Wenn nicht der Spezialfall transversale Isotropie oder Isotropie vorliegt, wird man nun immer eine andere Verformung messen als im ersten Experiment.
Die angesprochenen Drehungen werden in der Kontinuumsmechanik durch orthogonale Tensoren Q repräsentiert. Eine Symmetriegruppe gR besteht aus denjenigen Transformationen, die die Formänderungsenergie e invariant lassen. Mathematisch wird das mit dem Verzerrungstensor E durch
ausgedrückt.[1]:379 Darin bedeutet „·“ das Matrizenprodukt und das hochgestellte „⊤“ eine Transponierung. Mit Q gehört auch -Q zur Symmetriegruppe, was durch Hinzufügen des negativen Einheitstensors -1, der eine Punktspiegelung repräsentiert, zu gR berücksichtigt wird. Die Symmetriegruppe des orthotropen Materials ist[1]:382
Darin steht
In der isotropen Hyperelastizität hängt die Formänderungsenergie von den Hauptinvarianten I1,2,3 des Verzerrungstensors E ab:
Die analoge Darstellung der Anisotropie erfordert, dass ein komplettes System von skalarwertigen Funktionen bekannt ist, die unter allen Transformationen in der Symmetriegruppe gR invariant sind.[1]:380 Bei der Orthotropie bleiben die folgenden Terme invariant:[1]:382
Darin ist Eij := êi·E·êj für i,j=1,2,3 und ê1,2,3 sind die Einheitsvektoren in Richtung der paarweise orthogonalen Orthotropieachsen.
Gegeben sind zwei Tensoren zweiter Stufe
Darin sind
Die Matrix
Die Koeffizienten
Formelzeichen | Bedeutung |
---|---|
Elastizitätsmoduln in den Orthotropieachsen | |
Schubmoduln in Ebenen senkrecht zu den Orthotropieachsen | |
Querkontraktionszahlen bei Zug in Richtung einer Orthotropieachse |
Die Dimension der Elastizitätsmoduln
Die Querkontraktionszahlen beschreiben, wie sich eine entlang einer Richtung – z. B. der 1-Richtung – gezogene Materialprobe quer dazu – z. B. in 2-Richtung – kontrahiert. Die entsprechende Querkontraktionszahl wäre dann
Wegen des Ursache-Wirkungs-Konzepts ist meistens
Ein Material ist linear elastisch orthotrop, wenn eine Orthonormalbasis existiert, so dass das Elastizitätsgesetz dargestellt in Bezug auf diese Basis folgende Form annimmt:
Die Matrix S ist die Nachgiebigkeitsmatrix und ihre Symmetrie erfordert:
sodass von den zwölf Einträgen nur neun unabhängig sind.
Invertierung der Nachgiebigkeitsmatrix unter Berücksichtigung ihrer Symmetrie liefert die ebenfalls symmetrische Steifigkeitsmatrix
mit
Die Nachgiebigkeitsmatrix und die Steifigkeitsmatrix sind an denselben Stellen mit von Null verschiedenen Werten besetzt.
In der kubischen Anisotropie sind die Elastizitäts- und Schubmoduln sowie die Querdehnzahlen alle gleich:
womit nur drei unabhängige Elastizitätsparameter übrig bleiben. Transversale Isotropie mit fünf unabhängigen Elastizitätsparametern stellt sich ein mit:
In der Isotropie gelten die Identitäten der kubischen Anisotropie und die drei übrig bleibenden unabhängigen Größen sind zusätzlich durch den letzten Zusammenhang in der transversalen Isotropie verbunden, sodass nur noch zwei unabhängige Elastizitätsparameter übrig bleiben.
In dünnwandigen Strukturen aus orthtropem Material sind zwei der Orthotropieachsen oftmals in den Vorzugsrichtungen der Struktur gelegen, wie zum Beispiel bei Holzplatten, und es liegt ein ebener Spannungszustand vor.
Hier ist σ13=σ23=σ33=0 und aus letzterer Identität leitet sich
ab. Das Elastizitätsgesetz vereinfacht sich zu
bzw.
mit jeweils symmetrischer Nachgiebigkeits- bzw. Steifigkeitsmatrix.
In der linearen orthotropen Elastizität für den Ebenen Spannungszustand werden die Schubmoduln
Hier finden die Verzerrungen ausschließlich in der 1-2-Ebene statt, nur die Normalspannung senkrecht zur Ebene darf auftreten. Aus
mit
ab. Das Elastizitätsgesetz reduziert sich auf
bzw.
mit jeweils symmetrischer Steifigkeits- bzw. Nachgiebigkeitsmatrix.
In der linearen orthotropen Elastizität für den Ebenen Verzerrungszustand werden die Schubmoduln
Die Materialparameter können nicht beliebig gewählt werden, sondern müssen gewissen Stabilitätskriterien genügen. Diese folgen aus der Forderung, dass die Steifigkeits- und Nachgiebigkeitsmatrizen positiv definit sein müssen. Dies führt auf die Bedingungen:
Werden an einem realen Werkstoff Materialparameter identifiziert, die diesen Stabilitätskriterien widersprechen, ist Vorsicht geboten. Die Stabilitätskriterien lauten:[2]
Wenn die linke Seite der letzten Ungleichung gegen null geht, setzt das Material einer hydrostatischen Kompression zunehmend Widerstand entgegen. Aus der Symmetrie der Nachgiebigkeitsmatrix folgt ergänzend:
In der Hyperelastizität ergeben sich die Spannungen aus der Ableitung der Formänderungsenergie nach den Dehnungen. Damit die Spannungen linear in den Dehnungen sind, muss demnach die Formänderungsenergie quadratisch in den Dehnungen sein, denn nur dann ist ihre Ableitung linear. Unter Verwendung der #Invarianten Terme ergibt sich der Ansatz
mit neun Parametern a bis p. Um dies nach ε ableiten zu können, müssen die Komponenten εij als Funktion des Tensors ε ausgedrückt werden. Dies gelingt mit der Darstellung des Frobenius-Skalarprodukts ":" als Spur:
Mit der Abkürzung
Aus dem Ansatz der Formänderungsenergie berechnen sich die Spannungen zu
oder in Voigt-Notation im ê1,2,3-System
Im #Elastizitätsgesetz für 3D lassen sich die Parameter direkt ablesen. Ableitung der Spannungen nach den Dehnungen liefert den konstanten und symmetrischen Elastizitätstensor 4. Stufe:
Die Tensoren Kii werden Strukturvariable genannt, weil sie die interne Struktur des Materials repräsentieren[1]:387 und mit ihnen auch die invarianten Terme dargestellt werden können. Nicht-linear hyperelastisches Verhalten kann modelliert werden, indem
In diesem Abschnitt wird die Frage geklärt, warum die Steifigkeitsmatrix nur an den entsprechenden Stellen besetzt ist. Im Allgemeinen tauchen in einem linearen Materialgesetz 21 unabhängige Materialkonstanten auf. Im Fall der Orthotropie reduziert sich aber die Zahl der Konstanten auf 9. Warum das so ist, ist nachfolgend dargestellt.
Die (linearen) Abbildungen, die 180-Grad-Drehungen um die Orthotropieachsen beschreiben, lassen sich mit Matrizen beschreiben. Wählt man als Bezug eine Basis, deren Basisvektoren sich mit den senkrecht aufeinanderstehenden Drehachsen decken, dann haben diese orthogonalen Matrizen folgende Gestalt
Diese 3 Matrizen bilden eine echte Untergruppe der Drehgruppe SO(3). Das Produkt dieser drei Matrizen ist die Einheitsmatrix:
Die 3 Matrizen Ax,y,z und zusätzlich die negative Einheitsmatrix -E, die eine Punktspiegelung repräsentiert, bilden die Symmetriegruppe des orthotropen Materials[1]:382. Die Symmetriegruppe eines anisotropen Materials ohne -E ist immer eine echte Untergruppe der Drehgruppe SO(3); SO(3) mit -E ist die Symmetriegruppe eines isotropen Materials.
Gedankenexperiment: Ein Teilchen und dessen Umgebung wird einer bestimmten Deformation unterzogen und damit einem bestimmten Verzerrungstensor
Die Änderung der Verzerrungsrichtung kann mit einer Drehmatrix
Mithilfe eines linearen Materialgesetzes
Im allgemeinen Fall der Anisotropie gilt zwar nicht
Aber genau dies fordert man für die oben beschriebene Teilmenge von SO(3) im Fall der Orthotropie: Ein Material heißt orthotrop, wenn für die Funktion
In Indexschreibweise
Nun dieselbe Bedingung in Voigt’scher Notation: Mit der Definition
gilt
Mit der neuen Definition
ergibt sich
In Voigt’scher Notation erhält man also als Symmetriebedingung
Und da dies für beliebige Dehnungen gelten muss, ist die Symmetriebedingung
Da im Spezialfall der Orthotropie die 3×3-Matrizen
Die Symmetriebedingung ausgewertet für diese Matrizen ergibt
An den letzten 3 Gleichungen erkennt man, dass
Da diese Voigt’sche Steifigkeitsmatrix außerdem symmetrisch ist, bleibt