Die Quantenstatistik wendet zur Untersuchung makroskopischer Systeme die Methoden und Begriffe der klassischen statistischen Physik an und berücksichtigt zusätzlich die quantenmechanischen Besonderheiten im Verhalten der Teilchen. Sie geht davon aus, dass sich das System in einem Zustand befindet, der nur durch makroskopische Größen bestimmt ist, aber durch eine große Anzahl verschiedener, nicht näher bekannter, Mikrozustände realisiert sein kann. Jedoch wird das Abzählen der verschiedenen möglichen Mikrozustände dahin gehend abgeändert, dass das Vertauschen zweier gleicher Teilchen keinen verschiedenen Mikrozustand hervorbringt. Damit wird dem besonderen Charakter der Ununterscheidbarkeit identischer Teilchen Rechnung getragen. Außerdem werden für die Energien der Zustände einzelner Teilchen nur die quantenmechanisch möglichen Werte zugelassen.
Wie die Quantenmechanik berücksichtigt auch die Quantenstatistik die folgende doppelte Unkenntnis:[1]
Liegt das System in einem Zustand vor, der durch einen Vektor
Er beschreibt, mit welchen reellen Wahrscheinlichkeiten
Die Überlagerung ist inkohärent. Dies drückt sich darin aus, dass der Dichteoperator von Phasenbeziehungen zwischen den Zuständen
Eine Folge ist, dass Vorgänge, bei denen Kohärenz wichtig ist, z. B. Quantencomputing oder Quantenkryptographie, nicht leicht im Rahmen der Quantenstatistik beschrieben werden können bzw. durch thermodynamische Effekte erschwert werden.
Für die Quantenstatistik ist die Existenz identischer Teilchen wichtig. Das sind Quantenobjekte, die sich durch keine Messung unterscheiden lassen; d. h., der für die Quantenphysik grundlegende Hamiltonoperator des Systems (siehe z. B. Mathematische Struktur der Quantenmechanik) muss symmetrisch in den Teilchenvariablen sein, z. B. in den Orts- und Spinfreiheitsgraden des einzelnen Teilchens. Die Vielteilchen-Wellenfunktion
Da jede Permutation aus Transpositionen
Mit anderen Worten: für symmetrische Vielteilchenzustände identischer Teilchen bleibt bei Vertauschen zweier beliebiger Teilchen das Vorzeichen der Gesamtwellenfunktion erhalten, bei antisymmetrischen Vielteilchenzuständen wechselt es.
Das Experiment zeigt, dass die Natur tatsächlich nur solche Zustände realisiert, was am Fehlen von Austauschentartung erkennbar ist. Man bezeichnet diese Tatsache auch als Symmetrisierungspostulat.
Die Wahrscheinlichkeiten
Dabei sind Bosonen Teilchen mit ganzzahligem, Fermionen mit halbzahligem Spin, jeweils gemessen in Einheiten von
Diese Verknüpfung des Teilchenspins mit der Symmetrie der Wellenfunktion bzw. dem Vorzeichen der Wellenfunktion bei Vertauschung zweier Teilchen wird als Spin-Statistik-Theorem bezeichnet. Es wurde von Wolfgang Pauli aus allgemeinen Prinzipien der relativistischen Quantenfeldtheorie bewiesen.
In zwei Dimensionen ist auch ein Phasenfaktor
Beispiele für quantenstatistische Effekte, d. h. Effekte, bei denen die Vertauschungseigenschaften der Gesamtwellenfunktion eine entscheidende Rolle spielen, sind:
Auch das Drehverhalten der Wellenfunktion ist in diesem Zusammenhang interessant: bei einer räumlichen Drehung um 360° ändert sich die Wellenfunktion
während sie sich für Bosonen reproduziert:
Durch eine solche 360°-Drehung kann die Vertauschung zweier Teilchen erfolgen: Teilchen 1 bewegt sich zum Ort 2, z. B. auf der oberen Hälfte einer Kreislinie, während Teilchen 2 sich zum leer gewordenen Ort von 1 auf der unteren Halbkreislinie bewegt, um ein Zusammentreffen zu vermeiden. Das Ergebnis der Permutationsgleichung passt also zum ungewöhnlichen Drehverhalten fermionischer Wellenfunktionen (mathematische Struktur: siehe Doppelgruppe SU(2) zur gewöhnlichen Drehgruppe SO(3)).
Zur Herleitung der Statistik idealer Quantengase betrachten wir ein System im großkanonischen Ensemble, d. h. das betrachtete System sei an ein Wärmebad und an ein Teilchenreservoir angekoppelt. Die großkanonische Zustandssumme ist dann gegeben durch
wobei
Dabei hängt die Energie
Die zweite Summe läuft über alle möglichen Besetzungszahlen
Die Summe lässt sich für die beiden Teilchensorten auswerten. Für Fermionen erhält man
und für Bosonen
wobei im letzten Schritt die Konvergenz der geometrischen Reihe gefordert wurde. Mit Kenntnis der großkanonischen Zustandssumme lässt sich auch das großkanonische Potential
angeben. Damit lassen sich die thermodynamischen Größen Entropie
Wir interessieren uns hier für die mittlere Besetzungszahl
Das ergibt für Fermionen die Fermi-Dirac-Verteilung
und für Bosonen die Bose-Einstein-Verteilung
Der Formalismus berücksichtigt sowohl die thermodynamischen als auch die quantenmechanischen Phänomene.
Der gerade behandelte Unterschied zwischen Fermionen und Bosonen ist dabei wesentlich: So sind z. B. die quantisierten Schallwellen, die sog. Phononen, Bosonen, während die Elektronen Fermionen sind. Die betreffenden Elementaranregungen liefern in festen Körpern ganz unterschiedliche Beiträge zur spezifischen Wärme: der Phononenbeitrag hat eine charakteristische Temperaturabhängigkeit
Für diese und ähnliche Probleme kann man oft auch Methoden der Quantenfeldtheorie anwenden, z. B. Feynman-Diagramme. Auch die Theorie der Supraleitung kann man so behandeln.