Zustandsdichte

Zustandsdichte

Die Zustandsdichte $ D(E) $ bzw. $ D(\omega ) $ (engl. {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value), abgekürzt DOS) ist eine physikalische Größe, die angibt, wie viele Zustände pro Energieintervall $ \mathrm {d} E $ bzw. pro Frequenzintervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{d}\omega in einem physikalischen System existieren.

Im Allgemeinen wird die Zustandsdichte für Vielteilchensysteme im Rahmen eines Modells unabhängiger Teilchen betrachtet. Dann beziehen sich die Variablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \omega bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E=\hbar \omega auf die Energie der 1-Teilchenzustände. Häufig wird die Zustandsdichte dann auch in Abhängigkeit vom Impuls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec{p} = \hbar \vec{k} bzw. Wellenvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec{k} der 1-Teilchenzustände betrachtet und gibt deren Anzahl pro Volumenintervall des Impulsraums (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{d}^3\vec{p} ) bzw. des reziproken Raums (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{d}^3\vec{k} ) an. Die Zustandsdichte kann sich auf verschiedene Teilchensorten beziehen, z. B. auf Photonen, Phononen, Elektronen, Magnonen, Quasiteilchen, und wird pro Einheit des räumlichen Volumens angegeben. Für freie Teilchen ohne Spin lässt sich die Zustandsdichte daraus berechnen, dass im Phasenraum jeder quantenmechanische Zustand das Volumen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (2 \pi \hbar)^3 einnimmt. Die Zustandsdichte (pro Volumen) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): D(\vec{k}) ist dann konstant

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): D(\vec{k}) = \frac{1}{(2 \pi)^3} \ .

Im Falle von Wechselwirkungen der Teilchen, sei es untereinander oder mit vorgegebenen Potentialen, kann die Zustandsdichte stark davon abweichen (siehe z. B. Bändermodell).

Definition

Allgemein ist die – auf das Volumen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V bezogene – Zustandsdichte für eine abzählbare Anzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): N an Energieniveaus definiert durch:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): D(E) = \frac{1}{V} \cdot \sum_{i=1}^N \delta(E - E(\vec{k}_i))

mit der Delta-Distribution Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \delta .

Daraus erhält man durch Erweitern mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (\Delta k)^d = \left( \frac{2 \pi}{L} \right)^d (der kleinsten erlaubten Änderung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k für ein Teilchen in einem Kasten der Dimension $ d $ und Länge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L ) und Übergang zu einem Riemann-Integral (Limes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L \to \infty ) die auf das Volumen bezogene Zustandsdichte für kontinuierliche Energieniveaus:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): D(E) := \int_{\R^d}\frac{\mathrm{d}^d k}{(2\pi)^d} \cdot \delta(E - E(\vec k)) \qquad (*)

mit

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): d der räumlichen Dimension des betrachteten Systems
  • dem Betrag $ k $ des Wellenvektors.

Äquivalent kann die Zustandsdichte auch als Ableitung der mikrokanonischen Zustandssumme Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Z_m(E) = N(E) nach der Energie aufgefasst werden:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): D(E) = \frac{1}{V} \cdot \frac{\mathrm{d} N(E)}{\mathrm{d}E}

Die Zahl der Zustände mit Energie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E' (Entartungsgrad) ist gegeben durch:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): g(E') = \lim_{\Delta E \to 0} \int_{E'}^{E'+\Delta E} D(E) \mathrm{d}E = \lim_{\Delta E \to 0} D(E') \Delta E , wobei das letzte Gleichheitszeichen nur dann gilt, wenn der Mittelwertsatz der Integralrechnung für das Integral anwendbar ist.

Anschauung

Anschaulich zählt man die Mikrozustände für eine vorgegebene Energie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E : betrachtet man ein System mit $ N $ Mikrozuständen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): i , so wird die Zustandsdichte beschrieben durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): D(E) = \sum_{i=1}^N \delta(E - E_i)

da das Integral über die Zustandsdichte gerade die Gesamtzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): N der Mikrozustände liefert:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \int_{\R}\sum_{i=1}^N \delta(E-E_i) \cdot \mathrm{d}E = \sum_{i=1}^N = N

und außerdem liefert folgendes Integral die Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n(E) der Mikrozustände bei Energie $ E $:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \lim_{\Delta E \to 0} \sum_{i=1}^N \int_{E_i-\Delta E}^{E_i+\Delta E}\delta(E-E_i) \cdot \mathrm{d}E = n(E)

In obiger Formel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (*) ist zumindest für die Anschauung die Eigenschaft Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \delta(g(x)) = \sum_{i=1}^{n}\frac{\delta(x - x_{i})}{|g^{\prime}(x_{i})|} der Deltadistribution wichtig, die jedoch nur für endlich viele und einfache Nullstellen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x_i von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): g(x) gilt.

n-dimensionales Elektronengas

Die folgenden Erläuterungen beziehen sich vorrangig auf Anwendungen in der Festkörperphysik.

Zustandsdichte über der Energie abhängig von der Dimension (3D = gepunktet, 2D = rot, 1D = grün, 0D = blau). Die Sprünge in den Zustandsdichten für die Dimensionen D=0 bis D=2 sind darin begründet, dass in diesen Fällen die Zustandsdichten um verschiedene Energiezustände gezeichnet sind. Um diese Energiezustände herum hat die Zustandsdichte dann die berechnete und in der Tabelle dargestellte Form.

In einem $ n $-dimensionalen Elektronengas können sich Ladungsträger in den Dimensionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 1, \dotsc , n frei bewegen. Der entsprechende Anteil der Energie ist kontinuierlich und kann unter Nutzung der parabolischen Näherung angegeben werden:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E = \frac{\hbar^2 k^2}{2m^*}

Dabei ist

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m^* die effektive Masse des Ladungsträgers im Festkörper, genauer ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m^* die effektive Zustandsdichtemasse
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \hbar das (durch $ 2\pi $ geteilte) Plancksche Wirkungsquantum.

Im Gegensatz dazu ist die Energiekomponente der anderen Dimensionen diskretisiert in den Werten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_l . Die (auf das Volumen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V bezogene) Zustandsdichte kann allgemein beschrieben werden:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): D(E) = 2 \cdot \frac{\mathrm{d} N(E)}{\mathrm{d}E} \frac{1}{V}.

Darin entspricht

  • der Vorfaktor 2 den zwei möglichen Spinzuständen (oft wird er aber in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): N(E) berücksichtigt, hier wurde dies nicht so gemacht)
  • $ V=L_{x}\cdot L_{y}\cdot L_{z} $ dem Volumen des Festkörpers
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): N(E) der Anzahl aller Zustände mit Energie kleiner gleich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E (vgl.: Mikrokanonische Zustandssumme Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Z_m ):
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): N(E) = \begin{cases} \frac{V_k}{\Omega_k} & \text{wenn} \quad n = 3\\ \sum_l \Theta(E-E_l) \frac{V_k}{\Omega_k} & \text{wenn} \quad n = 1,2\\ \sum_l \Theta(E-E_l) & \text{wenn} \quad n = 0 \end{cases}
    • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V_k beschreibt im $ n $-dimensionalen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k -Raum das Gesamtvolumen aller Zustände, die bei der verbleibenden Energie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E-E_l zugänglich sind
    • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Omega_k ist das Volumen eines solchen Zustandes.
    • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Theta ist die Heaviside-Funktion.
Werte für verschieden-dimensionale Elektronengase
Gesamtvolumen aller Zustände
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V_k
Volumen eines Zustandes
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\Omega_k}
(auf das Volumen bezogene) Zustandsdichte
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): D(E)
im k-Raum bei der verbleibenden Energie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E-E_l
3D – Bulk Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{4}{3}\pi k^3 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{(2\pi)^3}{L_x L_y L_z} Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{(2m^*)^\frac{3} {2}} {2\pi^2\hbar^3}\sqrt{E}
2D – Quantentopf/Quantenfilm Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \pi k^2 $ {\frac {(2\pi )^{2}}{L_{x}L_{y}}} $ Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{m^*} {\pi\hbar^2 L_z} \sum_l \Theta(E-E_l)
1D – Quantendraht Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 2k Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{2\pi}{L_x} Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\sqrt{2m^*}}{\pi\hbar L_y L_z}\sum_l \frac{1}{\sqrt{E-E_l}}
0D – Quantenpunkt $ {\frac {2}{L_{x}L_{y}L_{z}}}\sum _{l}\delta (E-E_{l}) $

Im Halbleiter

Zustandsdichten (farbig) in einem undotierten Halbleiter mit direktem Bandübergang. Zusätzlich ist die Fermi-Verteilung bei Raumtemperatur nach links aufgetragen, als Energieniveaus das Fermi-Niveau EF und die Leitungsbandenergie EC.

In Halbleitermaterialien wird wegen der periodisch auftretenden Atomkerne ein ähnlicher Ansatz für das Leitungs- und Valenzband gemacht (siehe Bändermodell). Halbleiter zeichnet aus, dass ihre Dispersionkurven oder auch Bandstruktur ein Maximum (Valenzband) und Minimum (Leitungsband) besitzt, welche nicht überlappen, sondern durch die Bandlücke getrennt sind. Dabei wird bei einer Versetzung der Extrema im Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k -Raum (Impulsraum) von einem indirekten, bei gleichem Impulsunterschied von einem direkten Halbleiter gesprochen. Das funktionale Verhalten um solche Extremwerte lässt sich parabolisch (quadratisch) nähern. Die Krümmung dieser zur Näherung verwendeten Form muss allerdings nicht mit der Krümmung der Dispersionskurve der oben besprochenen freien Elektronen übereinstimmen. Stattdessen weist man den Ladungsträgern, also Elektronen und Löchern, in den beiden Bändern bei diesen Extrema effektive Massen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m^* zu so, dass nun die funktionale Beschreibung identisch zu der, der echten freien Elektronen, ist.

Zustandsdichten (farbig) in einem n-dotierten Halbleiter mit direktem Bandübergang. Energieniveau der Dotieratome ED.

Die Energie der Leitungsband-Unterkante sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_\mathrm{C} , die der Valenzband-Oberkante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_\mathrm{V} , die Differenz ist gleich der Bandlückenenergie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_\mathrm{G}=E_\mathrm{C}-E_\mathrm{V} . Die Zustandsdichte im Leitungsband ist ($ m_{\mathrm {e,d} }^{*} $ ist die Zustandsdichtemasse des Elektrons im Leitungsband, also seine gemittelte effektive Masse):

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): D_\mathrm{C}(E)=\frac{(2m^*_\mathrm{e,d})^\frac{3} {2}} {2\pi^2\hbar^3}\sqrt{E-E_\mathrm{C}}

Die Zustandsdichte im Valenzband ist (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m^*_\mathrm{p,d} ist die Zustandsdichtemasse des Lochs im Valenzband):

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): D_\mathrm{V}(E)=\frac{(2m^*_\mathrm{p,d})^\frac{3} {2}} {2\pi^2\hbar^3}\sqrt{E_\mathrm{V}-E}

Bei dotierten Halbleitern treten zu diesen möglichen Zuständen noch Zustände in der Bandlücke auf. Diese sind bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n -Dotierung nahe am Leitungsband und bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p -Dotierung nahe am Valenzband. Durch Zuführen von Energie kann die Aktivierungsenergie überwunden werden und es bilden sich vermehrt besetzte Zustände in Leitungs- bzw. Valenzband. Darüber hinaus ändert sich durch Dotierung die Lage des Fermi-Niveaus: es wird bei $ n $-Dotierung angehoben, bzw. senkt sich bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p -Dotierung zum Valenzband hin ab. Bei einer Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n -Dotierung sind damit bereits bei Raumtemperatur wegen der thermischen Energie weit mehr Zustände im Leitungsband besetzt als bei einem undotierten Material. Die zusätzlichen freien Ladungsträger können damit den Stromtransport erhöhen.

Die thermische Besetzung der Zustände wird durch die Fermi-Verteilung bestimmt. Die Wahrscheinlichkeitsdichte, dass ein Zustand mit der Energie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): [E, E+\mathrm{d}E] besetzt ist, schreibt sich

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): W_\mathrm{e}(E) = \frac{1}{\exp{\left(\frac{E-\mu}{k_\mathrm{B}T}\right)}+1}

Die Wahrscheinlichkeitsdichte, dass ein Zustand mit der Energie $ [E,E+\mathrm {d} E] $ nicht besetzt oder äquivalent ausgedrückt mit einem Loch besetzt ist, schreibt sich

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): W_\mathrm{h}(E) = 1-W_\mathrm{e}(E)=\frac{1}{\exp{\left(-\frac{E-\mu}{k_\mathrm{B}T}\right)}+1}

Damit lassen sich die Ladungsträgerdichten, also Elektronendichte im Leitungsband Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n und Löcherdichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p im Valenzband, angeben:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n=\int_{E_\mathrm{C}}^{\infty}W_\mathrm{e}(E)\, D_\mathrm{C}(E)\,\mathrm{d}E

sowie

$ p=\int _{-\infty }^{E_{\mathrm {V} }}W_{\mathrm {h} }(E)\,D_{\mathrm {V} }(E)\,\mathrm {d} E $

Eigentlich sollten die Integrationsgrenzen nicht bis unendlich ausgedehnt sein, sondern nur bis zum Ende des jeweiligen Bandes. Allerdings ist dort die Fermi-Verteilung schon näherungsweise Null – das chemische Potential liegt nämlich im Bereich der Bandlücke – sodass der Fehler vernachlässigbar ist. Zur Berechnung dieser Integrale siehe Fermi-Dirac-Integral.

Literatur

  • Wolfgang Demtröder: Experimentalphysik Bd. 3 – Atome, Moleküle und Festkörper. 3. Auflage. Springer, Berlin 2005, ISBN 3-540-21473-9.

Weblinks