Kosterlitz-Thouless-Übergang

Kosterlitz-Thouless-Übergang

Version vom 30. Dezember 2020, 21:14 Uhr von imported>Cepheiden (EN-Angaben ergänzt bzw. korrigiert, WP:ZR)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Der Kosterlitz-Thouless-Übergang, auch Berezinsky–Kosterlitz–Thouless-Übergang genannt, nach John M. Kosterlitz, David J. Thouless und Wadim Lwowitsch Beresinski, ist ein spezieller Typ von Phasenübergang, mit exponentiell divergierender Korrelationslänge am kritischen Punkt. Er ist ein zweidimensionaler Effekt und wurde in dünnen Filmen von flüssigem Helium und Supraleitern sowie in Bose-Einstein-Kondensaten beobachtet. Er ist historisch das erste Beispiel eines topologischen Phasenübergangs. Kosterlitz und Thouless erhielten unter anderem hierfür 2016 den Nobelpreis für Physik.

Phasenübergang

Der Kosterlitz-Thouless-Übergang kann beim zweidimensionalen XY-Modell beobachtet werden, einem einfachen Spinmodell mit Nächste-Nachbarn-Wechselwirkung. Dieses System vollzieht im Zweidimensionalen nicht den gewohnten Phasenübergang zweiter Ordnung nach der Ehrenfest-Klassifikation, da die geordnete Phase in dieser Dimension durch transversale, logarithmisch mit dem System-Maßstab divergierende Fluktuationen (Goldstone-Moden) zerstört wird (ein Beispiel des Mermin-Wagner-Theorems). Stattdessen divergiert die Korrelationslänge beim Kosterlitz-Thouless-Übergang exponentiell in der Form

$ \xi (T)\sim \exp \left(\mathrm {const} \cdot {\sqrt {\frac {T_{C}}{T-T_{C}}}}\right) $

für $ T>T_{C} $ mit

Der KT-Übergang ist ein Phasenübergang unendlich hoher Ordnung. Man kann den Phasenübergang als Übergang von gebundenen Vortex-Anti-Vortex-Zuständen unterhalb der kritischen Temperatur (Vortices sind topologisch stabile Anregungen im XY-Modell) zu ungebundenen Vortex-Zuständen auffassen.

Literatur

  • V.L. Berezinskii: Destruction of Long-range Order in One-dimensional and Two-dimensional Systems having a Continuous Symmetry Group I. Classical Systems. In: Sov. Phys. JETP. Bd. 32, 1971, S. 493 (pdf).
  • J. M. Kosterlitz, D. J. Thouless: Ordering, metastability and phase transitions in two-dimensional systems. In: Journal of Physics C: Solid State Physics. Band 6, Nr. 7, April 1973, S. 1181–1203, doi:10.1088/0022-3719/6/7/010.
  • J. M. Kosterlitz: The critical properties of the two-dimensional xy model. In: Journal of Physics C: Solid State Physics. Band 7, Nr. 6, März 1974, S. 1046–1060, doi:10.1088/0022-3719/7/6/005.
  • B. I. Halperin, D. R. Nelson: Theory of Two-Dimensional Melting. In: Physical Review Letters. Band 41, Nr. 2, 10. Juli 1978, S. 121–124, doi:10.1103/PhysRevLett.41.121.
  • A. P. Young: Melting and the vector Coulomb gas in two dimensions. In: Physical Review B. Band 19, Nr. 4, 15. Februar 1979, S. 1855–1866, doi:10.1103/PhysRevB.19.1855.
  • J. V. José: 40 Years of Berezinskii–Kosterlitz–Thouless Theory. World Scientific, 2013, ISBN 978-981-4417-65-5.