Version vom 26. April 2019, 11:05 Uhr von imported>Acky69
Verstärkungssättigung (englisch gain saturation), auch Sättigung der Verstärkung[1], Gewinnsättigung[2] oder Gewinn bei Sättigung[2] genannt, ist ein Begriff aus der Quantenoptik. Er beschreibt die Abhängigkeit der Verstärkung (engl. {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value)) von der Intensität des Laserlichtfeldes innerhalb des Laserresonators.
Verstärkungssättigung kommt dadurch zustande, dass eine erhöhte Laserintensität dazu tendiert, die Besetzungsinversion durch erhöhte stimulierte Emission abzubauen.
Definition
Die Intensitätsabhängigkeit des Verstärkungskoeffizienten $ g(\nu ) $ bei Sättigung lautet:[3]
- $ g(\nu )={\frac {g_{0}(\nu )}{1+\Phi /\Phi _{\mathrm {sat} }}} $
Dabei steht
- $ \nu $ für die Frequenz des Lichtes
- $ g_{0}(\nu ) $ für die Kleinsignalverstärkung (s. u.)
- $ \Phi $ für den Photonenfluss, also für die Anzahl der Photonen, welche innerhalb einer Sekunde eine Einheitsfläche von 1 m² durchqueren:[4]
- $ \Phi =cq/V $
- mit
- $ \Phi _{\mathrm {sat} } $ für den Sättigungsfluss.
Photonenfluss und Intensität sind daher verbunden über[4]
- $ I=h\nu \Phi $
mit dem Planckschen Wirkungsquantum h.
Kleinsignalverstärkung
Die Kleinsignalverstärkung (englisch small-signal gain) entspricht der Verstärkung des Lasermediums im Grenzwert $ \Phi \rightarrow 0 $, also im Fall eines verschwindenden Lichtfeldes.
Der Wert für den {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) eines Dreiniveaulasers:
- $ g_{0}(\nu )={\frac {P-\Gamma }{P+\Gamma }}\cdot \sigma (\nu )\cdot N_{T} $
hängt ab von
- der Pumpleistung $ P $
- der Übergangsrate $ \Gamma $ des Laserübergangs
- dem Absorptionsquerschnitt $ \sigma (\nu ) $
- der Schwelleninversion $ N_{\mathrm {T} }=(N_{2}-N_{1})_{\text{Threshold}}; $[3] $ N_{2} $ und $ N_{1} $ stehen für die Anzahl der Atome im oberen bzw. unteren Laserniveau. Vereinfachend wurde angenommen, dass beide Niveaus die gleiche Entartung aufweisen.
Während die Formel für die Intensitätsabhängigkeit der Verstärkung für einen Vierniveaulaser dieselbe ist wie ganz oben angegeben, fällt die Formel für die Kleinsignalverstärkung bei einem Vierniveaulaser ein wenig anders aus, da dort auch der Übergang zwischen unterem Laserniveau und Grundniveau in Betracht gezogen werden muss.
Einzelnachweise
- ↑ Jürgen Eichler, Hans Joachim Eichler: Laser. Bauformen, Strahlführung, Anwendungen. 7., aktualisierte Auflage. Springer, Berlin u. a. 2010, ISBN 978-3-642-10461-9, S. 40 (eingeschränkte Vorschau in der Google-Buchsuche).
- ↑ 2,0 2,1 Bahaa E. A. Saleh, Malvin Carl Teich: Grundlagen der Photonik. 2., vollständig überarbeitete und erweiterte Auflage. Wiley-VCH, Weinheim 2008, ISBN 978-3-527-40677-7, S. 666 (eingeschränkte Vorschau in der Google-Buchsuche).
- ↑ 3,0 3,1 Peter W. Milonni, Joseph H. Eberly: Lasers. John Wiley & Sons, New York NY u. a. 1988, ISBN 0-471-62731-3, S. 312.
- ↑ 4,0 4,1 Peter W. Milonni, Joseph H. Eberly: Lasers. John Wiley & Sons, New York NY u. a. 1988, ISBN 0-471-62731-3, S. 298.
en:Optical amplifier#Gain saturation