Grundzustand

Der Grundzustand eines quantenmechanischen oder quantenfeldtheoretischen Systems ist dessen Zustand mit der geringstmöglichen Energie (siehe auch Energieniveau).

Wenn das einzige Elektron des Wasserstoffatoms keine Energie mehr abgeben kann, befindet es sich im Grundzustand (unterste Linie)

Quantenmechanik

Der Grundzustand eines Systems ist stets stabil, da es keinen Zustand niedrigerer Energie gibt, in den es übergehen (zerfallen) könnte. Ein System in einem Zustand höherer Energie (einem angeregten Zustand) kann im Einklang mit dem Energieerhaltungssatz unter Energieabgabe in seinen Grundzustand oder einen weniger hoch angeregten Zustand übergehen, wenn dies nicht durch bestimmte Gesetzmäßigkeiten, etwa andere Erhaltungssätze (Auswahlregeln), verhindert wird.

Allerdings unterliegt der Begriff System einiger Willkür. Man kann z. B. die Teilchen, in die ein radioaktiver Atomkern zerfällt (beispielsweise Stickstoff-14-Kern + Elektron + Antineutrino), als lediglich einen weiteren Zustand des ursprünglichen Systems (hier Kohlenstoff-14-Kern) betrachten; in diesem Sinne ist bei einem Radionuklid auch der Grundzustand nicht stabil.

Der Grundzustand eines quantenmechanischen Systems muss nicht eindeutig sein. Falls es mehrere Zustände mit derselben niedrigsten Energie gibt, wird dies als entarteter Grundzustand bezeichnet. Ein Beispiel ist die spontane Symmetriebrechung, wo durch die Entartung des Grundzustandes die Symmetrie des Systems verringert wird.

Da die Temperatur eine monoton steigende Funktion der Energie der Einzelteilchen ist, befinden sich Systeme in einer "kalten" Umgebung normalerweise in ihrem Grundzustand. Für die meisten Systeme, z. B. Atome, ist schon die Raumtemperatur eine kalte Umgebung.

Ein System im Grundzustand kann immer noch überraschend viel Energie enthalten. Dies kann man am Beispiel der Fermi-Verteilung der Leitungselektronen in einem Metall sehen: die Fermi-Temperatur $ T_{f}\!\, $ der energiereichsten Elektronen in der Nähe der Fermi-Kante liegt bei einigen 10.000 K – auch dann, wenn das Metall weit unter Raumtemperatur abgekühlt ist. Diese Energie lässt sich dem Metall aber nicht entnehmen und nutzen, weil das Elektronengas keinen noch energieärmeren Zustand einnehmen kann.

Quantenfeldtheorie

In der Quantenfeldtheorie wird der Grundzustand häufig als Vakuumzustand, Vakuum oder Quantenvakuum bezeichnet. Der Grundzustand auf der flachen Minkowski-Raumzeit ist durch seine Invarianz unter Poincaré-Transformationen, insbesondere unter der Zeittranslation, definiert. Da für gekrümmte Raumzeiten die Poincarégruppe keine Symmetriegruppe ist, haben Quantenfelder in gekrümmten Raumzeiten i. Allg. keinen eindeutigen Grundzustand. Genauer ausgedrückt gibt es nur dann einen eindeutigen Grundzustand, wenn es eine einparametrige Isometriegruppe von Zeittranslationen der Raumzeit gibt.

Literatur

  • Peter W. Milonni: The quantum vacuum - an introduction to quantum electrodynamics. Acad. Press, San Diego 1994, ISBN 0-12-498080-5

News mit dem Thema Grundzustand

Die News der letzten Tage

22.11.2022
Exoplaneten | Teleskope
Weltraumteleskop JWST: Neues von den Atmospären von Exoplaneten
Beobachtungen des Exoplaneten WASP-39b mit dem James-Webb-Weltraumteleskop (JWST) haben eine Fülle von Informationen über die Atmosphäre des Planeten geliefert.
21.11.2022
Galaxien | Schwarze Löcher | Teleskope
Schärfster Blick in den Kern eines Quasars
Eine internationale Gruppe von Wissenschaftlern präsentiert neue Beobachtungen des ersten jemals identifizierten Quasars.
22.11.2022
Festkörperphysik | Physikdidaktik
Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.
21.11.2022
Quantenphysik
Ein Quant als Winkel
Die Feinstrukturkonstante ist eine der wichtigsten Naturkonstanten überhaupt: In Wien fand man nun eine bemerkenswerte neue Art, sie zu messen – nämlich als Drehwinkel.
21.11.2022
Akustik | Quantenoptik
Akustische Quantentechnologie: Lichtquanten mit Höchstgeschwindigkeit sortiert
Einem deutsch-spanischen Forscherteam ist es gelungen einzelne Lichtquanten mit höchster Präzision zu kontrollieren.
18.11.2022
Schwarze Löcher | Relativitätstheorie
Rekonstruktion eines ungewöhnlichen Gravitationswellensignals
Ein Forschungsteam aus Jena und Turin (Italien) hat die Entstehung eines ungewöhnlichen Gravitationswellensignals rekonstruiert.
18.11.2022
Thermodynamik | Festkörperphysik
Bläschenbildung: Siedeprozess deutlich genauer als bisher beschrieben
Siedet eine Flüssigkeit in einem Gefäß, bilden sich am Boden winzige Dampfbläschen, die aufsteigen und Wärme mit sich nehmen.
15.11.2022
Sterne | Planeten | Atomphysik | Quantenphysik
Neues vom Wasserstoff: Erkenntnisse über Planeten und Sterne
Mit einer auf Zufallszahlen basierenden Simulationsmethode konnten Wissenschaftler die Eigenschaften von warmem dichten Wasserstoff so genau wie nie zuvor beschreiben.
15.11.2022
Sterne | Kernphysik
Kosmische Schokopralinen: Innerer Aufbau von Neutronensternen enthüllt
Mit Hilfe einer riesigen Anzahl von numerischen Modellrechnungen ist es Physikern gelungen, allgemeine Erkenntnisse über die extrem dichte innere Struktur von Neutronensternen zu erlangen.
15.11.2022
Thermodynamik
Neue Aspekte der Oberflächenbenetzung
Wenn eine Oberfläche nass wird, spielt dabei auch die Zusammensetzung der Flüssigkeit eine Rolle.