Intensität (Physik)

(Weitergeleitet von Strahlungsintensität)
Physikalische Größe
Name Intensität
Formelzeichen $ I $
Größen- und
Einheitensystem
Einheit Dimension
SI W·m−2 = kg·s−3 M·T−3

Die Intensität oder Strahlungsintensität $ I $ ist in der Physik meist die Flächenleistungsdichte beim Transport von Energie. Der Begriff wird auch für den Betrag der Flächenstromdichte anderer physikalischer Größen verwendet.

Die Bezeichnung wird meist für Wellenphänomene wie elektromagnetische Strahlung oder Schall (Schallintensität) verwendet, aber auch für alle anderen Arten von Transport, z. B. für die Teilchendichte in der Quantenmechanik.

Außerhalb der Physik wird der Begriff in ungenauer Weise auch für „Stärke“, „Kraft“, „Amplitude“, oder „Pegel“ verwendet.

Berechnung

Die Intensität berechnet sich (in Klammern beispielhafte vereinfachte Formeln für die Energie $ E $ als betrachtete Größe):

  • für eine gegebene Fläche $ A $ im Raum: als Quotient aus der (durch diese Fläche) pro Zeit $ t $ übertragenen Menge der betreffenden Größe und der Größe der Fläche:
$ I={\frac {\frac {dE}{dt}}{A}}={\frac {P}{A}} $
mit der Leistung $ P $

oder

  • als Produkt aus der volumenbezogenen Dichte (z. B. Energiedichte $ w $) und der Geschwindigkeit $ v $ des Transports:
$ I=w\cdot v={\frac {dE}{dV}}\cdot {\frac {ds}{dt}} $

Intensität in der Radiometrie und Photometrie

In der Radio- und Photometrie werden folgende Größen als „Intensität“ („Strahlungsintensität“ bzw. „Lichtintensität“) bezeichnet:[1]:

  • Bestrahlungsstärke (radiometrisch): die Leistung elektromagnetischer Strahlung durch Fläche (durchströmte Fläche oder Fläche, auf die die Strahlung trifft)
  • Beleuchtungsstärke (photometrisch): die Bestrahlungsstärke, gewichtet mit der Empfindlichkeit des menschlichen Auges (photometrisches Strahlungsäquivalent).

Mit „Intensität“ kann aber – abweichend von der einleitend genannten generellen Definition von „Intensität“ – auch die Leistung in Bezug auf den Raumwinkel gemeint sein (Strahl- und Lichtstärke beschreiben Eigenschaften der Strahlungsquelle; sie sind unabhängig von der Position des Strahlungsempfängers):

  • Strahlstärke: die Leistung elektromagnetischer Strahlung durch Raumwinkel (bei Radiowellen lautet der Begriff „Strahlungsintensität“[2]),
  • Lichtstärke: die Strahlstärke, gewichtet mit dem photometrischen Strahlungsäquivalent.

Im Englischen stehen die Begriffe radiant intensity und luminous intensity für die Strahlstärke bzw. die Lichtstärke. Light intensity hingegen ist mehrdeutig.

Intensität in der Wellenlehre

Die Intensität elektromagnetischer Strahlung ist der Betrag des zeitlichen Mittels $ \textstyle \langle \dots \rangle _{t} $ des Poynting-Vektors $ \textstyle S $:

$ I=|\langle S\rangle _{t}| $

In Medien ohne Dispersion mit der Energiedichte $ \textstyle W $ gilt folgender Zusammenhang mit der Gruppengeschwindigkeit $ \textstyle v_{\mathrm {gr} } $:

$ I=\langle W\rangle _{t}\;v_{\mathrm {gr} } $

Bei einer monochromatischen, linear polarisierten elektromagnetischen Welle im Vakuum ist die Intensität:[3]

$ I={\frac {1}{2}}c\,\varepsilon _{0}E_{0}^{2}={\frac {1}{2}}{\frac {c}{\mu _{0}}}B_{0}^{2}={\frac {1}{2}}c\,\mu _{0}H_{0}^{2}\,. $

Dabei ist

Die Intensität ist also proportional zum Quadrat der Amplitude $ \textstyle A $ der Welle:

$ I\propto A^{2} $.

In linearen dielektrischen Medien mit dem Brechungsindex $ \textstyle n $ gilt:

$ I={\frac {1}{2}}c\,n\,\varepsilon _{0}E_{0}^{2} $.

Intensität einer Punktquelle

Veranschaulichung der quadratischen Abnahme mit der Entfernung nach Martin Wagenschein

Strahlt eine Punktquelle die Leistung $ \textstyle P $ in drei Dimensionen aus und gibt es keinen Energieverlust, dann fällt die Intensität quadratisch mit dem Abstand $ \textstyle r $ vom Objekt ab:

$ I={\frac {P}{4\pi r^{2}}}\, $.

Einfluss eines Mediums

Wenn das Medium dämpft (absorbiert), verliert die Welle Energie, welche z. B. in Wärmeenergie umgewandelt wird. Nimmt man an, dass die Intensitätsabnahme proportional der am jeweiligen Ort $ r $ vorhandenen Intensität ist, so ergibt sich analog zum Zerfallsgesetz ein exponentieller Verlauf, das Lambert-Beersche Gesetz:

$ I(r)=I_{0}\cdot \mathrm {e} ^{-\mu r} $

mit dem Absorptionskoeffizienten $ \mu $, der die Materialeigenschaften des durchquerten Mediums beschreibt.

Mit zunehmender Ausbreitung der Welle im Medium nimmt also deren Intensität exponentiell ab.

Siehe auch

  • Lambert-Strahler (Optik)
  • Kugelstrahler, isotroper Strahler (Antennentechnik)

Weblinks

Wiktionary: Intensität – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. Frank L. Pedrotti: Optik für Ingenieure: Grundlagen; mit 28 Tabellen; Introduction to optics dt., 3. Auflage, Springer, DE-832 UGH1219(3) 00000000 (ILL Ausleihe) 2005, ISBN 3-540-22813-6; 978-3-540-22813-6.
  2. electropedia, Internationales Elektrotechnisches Wörterbuch (IEV) der International Electrotechnical Commission: Eintrag 705-02-04 (Bereich Radiowellen) hat die Übersetzung: radiation intensity = „Strahlungsintensität <in einer gegebenen Richtung>“
  3. David J. Griffiths: Introduction to Electrodynamics, 3rd ed. Auflage, Prentice Hall, Upper Saddle River, N.J 1999, ISBN 0-13-805326-X.

Die News der letzten Tage

22.11.2022
Exoplaneten | Teleskope
Weltraumteleskop JWST: Neues von den Atmospären von Exoplaneten
Beobachtungen des Exoplaneten WASP-39b mit dem James-Webb-Weltraumteleskop (JWST) haben eine Fülle von Informationen über die Atmosphäre des Planeten geliefert.
21.11.2022
Galaxien | Schwarze Löcher | Teleskope
Schärfster Blick in den Kern eines Quasars
Eine internationale Gruppe von Wissenschaftlern präsentiert neue Beobachtungen des ersten jemals identifizierten Quasars.
22.11.2022
Festkörperphysik | Physikdidaktik
Chemielehrbücher: Es gibt keine Kohlensäure - Falsch!
Die Existenz von Kohlensäure war in der Wissenschaft lange umstritten: theoretisch existent, praktisch kaum nachweisbar, denn an der Erdoberfläche zerfällt die Verbindung.
21.11.2022
Quantenphysik
Ein Quant als Winkel
Die Feinstrukturkonstante ist eine der wichtigsten Naturkonstanten überhaupt: In Wien fand man nun eine bemerkenswerte neue Art, sie zu messen – nämlich als Drehwinkel.
21.11.2022
Akustik | Quantenoptik
Akustische Quantentechnologie: Lichtquanten mit Höchstgeschwindigkeit sortiert
Einem deutsch-spanischen Forscherteam ist es gelungen einzelne Lichtquanten mit höchster Präzision zu kontrollieren.
18.11.2022
Schwarze Löcher | Relativitätstheorie
Rekonstruktion eines ungewöhnlichen Gravitationswellensignals
Ein Forschungsteam aus Jena und Turin (Italien) hat die Entstehung eines ungewöhnlichen Gravitationswellensignals rekonstruiert.
18.11.2022
Thermodynamik | Festkörperphysik
Bläschenbildung: Siedeprozess deutlich genauer als bisher beschrieben
Siedet eine Flüssigkeit in einem Gefäß, bilden sich am Boden winzige Dampfbläschen, die aufsteigen und Wärme mit sich nehmen.
15.11.2022
Sterne | Planeten | Atomphysik | Quantenphysik
Neues vom Wasserstoff: Erkenntnisse über Planeten und Sterne
Mit einer auf Zufallszahlen basierenden Simulationsmethode konnten Wissenschaftler die Eigenschaften von warmem dichten Wasserstoff so genau wie nie zuvor beschreiben.
15.11.2022
Sterne | Kernphysik
Kosmische Schokopralinen: Innerer Aufbau von Neutronensternen enthüllt
Mit Hilfe einer riesigen Anzahl von numerischen Modellrechnungen ist es Physikern gelungen, allgemeine Erkenntnisse über die extrem dichte innere Struktur von Neutronensternen zu erlangen.
15.11.2022
Thermodynamik
Neue Aspekte der Oberflächenbenetzung
Wenn eine Oberfläche nass wird, spielt dabei auch die Zusammensetzung der Flüssigkeit eine Rolle.