Mpemba-Effekt

Mpemba-Effekt

Version vom 30. Dezember 2021, 21:10 Uhr von imported>Leiterweiter
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Icon tools.svg
Dieser Artikel wurde den Mitarbeitern der Redaktion Physik zur Qualitätssicherung aufgetragen. Wenn du dich mit dem Thema auskennst, bist du herzlich eingeladen, dich an der Prüfung und möglichen Verbesserung des Artikels zu beteiligen. Der Meinungsaustausch darüber findet derzeit nicht auf der Artikeldiskussionsseite, sondern auf der Qualitätssicherungs-Seite der Physik statt.
Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst entfernt. Bitte hilf der Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst.

Der Mpemba-Effekt ist ein überraschendes und der Intuition widersprechendes Phänomen, bei dem unter geeigneten Bedingungen vormals heißes Wasser schneller gefriert als zuvor kaltes Wasser. Benannt wurde der Effekt nach seinem „Wiederentdecker“ (1963), dem tansanischen Schüler Erasto B. Mpemba, der den Effekt durch eine Veröffentlichung 1969 international bekannt machte.[1]

Das effektvolle Schütten kochenden Wassers in sehr kalte Luft ist nicht der klassische Mpemba-Effekt in der Physik.

Geschichte

Von schnellerem Gefrieren erwärmten Wassers berichtete bereits im vierten vorchristlichen Jahrhundert der Philosoph Aristoteles als Beispiel für die von ihm postulierte Antiperistasis ({{Modul:Vorlage:lang}} Modul:ISO15924:97: attempt to index field 'wikibase' (a nil value)), nach der eine Qualität wächst, wenn sie von einer gegensätzlichen umgeben ist:

„Zur Schnelligkeit des Gefrierens trägt es auch bei, wenn das Wasser vorher erwärmt ist; dann kühlt es nämlich schneller ab. Deshalb stellen viele Leute Wasser, das sie rasch abkühlen wollen, erst in die Sonne, und wenn die Bewohner der Pontusgegenden auf dem Eis ihre Hütten für den Fischfang aufschlagen (sie schlagen nämlich ein Loch in das Eis und fischen), dann schütten sie heißes Wasser auf ihre Angelruten, um sie rascher zu vereisen; sie benutzen nämlich Eis anstelle von Blei, um die Ruten ruhig zu stellen.“

{{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) 1.12[2]

Im 13. Jahrhundert diskutierte dies der Mönch und Philosoph Roger Bacon (Opus Majus 6.1).[3]

Im 17. Jahrhundert erwähnten die Philosophen und Wissenschaftler Francis Bacon (Novum Organum 2.50)[4] und René Descartes (Les météores 1)[5] den Effekt.

1775 erschien eine Arbeit von dem schottischen Wissenschaftler Joseph Black, in der er den Effekt anhand von Experimenten sicherstellte.[6]

1788 bemerkte der erste deutsche Professor für Experimentalphysik Georg Christoph Lichtenberg bei eigenen Versuchen einen solchen Vorgang, konnte ihn aber nicht zuverlässig reproduzieren.[7]

1963 stieß der tansanische Schüler Erasto B. Mpemba auf das Phänomen, als er Speiseeis herstellte. Zusammen mit Denis G. Osborne veröffentlichte er 1969 die Ergebnisse zahlreicher Versuche zu diesem Thema.[1] Jedoch dauerte es einige Jahre, bis der Effekt weiter wissenschaftlich untersucht wurde.[8]

2016 erschien ein Übersichtsartikel, der darstellt, dass der Effekt, in der Definition "Abkühlung bis zum Gefrierpunkt", nicht existiert.[9]

Ursache

Die Ursache dieses Paradoxons ist noch nicht vollständig wissenschaftlich erklärt. Es gibt Hypothesen, welche zum einen die wesentliche Ursache darin sehen, dass die Menge des wärmeren Wassers beim Abkühlen in einem offenen System durch Verdunstung im Vergleich zur Menge des kühleren Wassers überproportional abnimmt. Dies liegt daran, dass der Dampfdruck einer Flüssigkeit (zu dem wiederum die Geschwindigkeit der Verdampfung proportional ist) exponentiell mit der Temperatur ansteigt. Das heißt, dass bezogen auf die gleiche Zeiteinheit mehr heißes als kaltes Wasser verdampft (Augustsche Dampfdruckformel). Dadurch liegen – wenn beim Versuch offene Gefäße verwendet werden – beim Erreichen des Gefrierpunktes unterschiedliche Wassermengen vor, und zwar derart, dass die Menge des ursprünglich wärmeren Wassers kleiner ist als die Menge des ursprünglich kühleren Wassers, und eine geringere Wassermenge gefriert bei ansonsten gleichen Bedingungen immer schneller als eine größere Wassermenge. In Jugend-Forscht-Versuchen mit geschlossenen Gefäßen trat der Mpemba-Effekt unter ansonsten identischen Randbedingungen aber mit vergleichbarer Häufigkeit auf,[10] was gegen Verdunstung als wesentliche Ursache spricht.

Zum anderen gibt es die Hypothese, dass im Wasser gelöste Salze (vor allem Hydrogencarbonate) bei hohen Temperaturen ausfallen (z. B. als Carbonate) und so keinen Einfluss mehr auf den Gefrierpunkt haben. Im kalten Wasser wächst die Konzentration der Salze im nach Kristallisationsbeginn noch flüssigen Wasser. Dies führt zu einer Gefrierpunktserniedrigung. Aber auch in Versuchen mit entsalztem Wasser trat der Mpemba-Effekt unter ansonsten identischen Randbedingungen etwa ebenso häufig auf, so dass gelöste Salze nicht die wesentliche Ursache sein können.[10]

Neuere Experimente deuten darauf hin, dass im Wasser gelöste Gase oder die bessere Wärmezirkulation bzw. -abgabe im heißen Wasser eine wesentliche Rolle spielen können.[10] Möglicherweise tritt der Mpemba-Effekt viel seltener auf, als manche Experimentatoren glauben: Unterkühlte Proben, bei denen lediglich eine dünne Wasserschicht an den Gefäßwänden tatsächlich schon zu Eis erstarrt ist, können vollständig durchgefrorenen Proben täuschend ähnlich sehen und werden daher leicht falsch zugeordnet.[11]

Es gibt bisher keine Übereinstimmung in der wissenschaftlichen Diskussion darüber, welche Effekte unter speziellen experimentellen Bedingungen den wesentlichen Einfluss auf den Mpemba-Effekt haben. Dies ist bis heute strittig[12][13] und kann, auch aufgrund des spärlich vorliegenden und teilweise mit methodischen Mängeln behafteten Datenmaterials, noch nicht eindeutig beantwortet werden.

Mpemba-Effekt und thermodynamische Systeme

Offenes System

Der Mpemba-Effekt lässt sich relativ leicht erklären, wenn ein offenes physikalisches System vorliegt. Charakteristisch für offene Systeme ist ein möglicher Stoff- und Wärmeaustausch des Systems mit seiner Umgebung, wobei die Umgebung im Falle eines offenen Systems per Definition nicht in die Massen- und Energiebilanz des Gesamtsystems miteinbezogen wird (oder anders ausgedrückt: die Umgebung ist kein relevanter Bestandteil des offenen Systems). Beispiel: Das aus einem offenen Becherglas verdampfende Wasser entweicht in die Atmosphäre. Dadurch nimmt sowohl die Wassermenge im Glas, als auch die im Wasser enthaltene Wärmemenge ab, während gleichzeitig der Wasser- und Energiegehalt der Atmosphäre zunimmt. Diese Zunahme wird aber nicht berücksichtigt beziehungsweise quantifiziert, da die abgegebene Energie relativ zur Energie der Atmosphäre vernachlässigbar klein ist.

Thermodynamisch gesehen werden bei Experimenten in offenen Systemen mehrere intensive (massenunabhängige) und extensive (massenabhängige) Größen gleichzeitig verändert, wodurch die Messung und Interpretation von beobachteten Effekten naturgemäß erschwert wird.

Wesentliche Einflussparameter

Die anfänglichen absoluten Wassermengen

Diese dürfen nicht zu klein sein, damit das Wasser nicht vollständig verdunstet ist, bevor es den Gefrierpunkt erreicht hat.

Die anfänglichen absoluten Temperaturen der jeweiligen Wassermengen

Dabei begünstigt eine große Temperaturdifferenz zwischen wärmerem und kälterem Wasser den Mpemba-Effekt dadurch, dass überproportional mehr wärmeres Wasser verdunsten kann. Allerdings darf die Temperatur des kühleren Wassers auch nicht zu nahe am Gefrierpunkt liegen, da das heißere System sonst nicht die Möglichkeit hat, das kühlere beim Abkühlen zu „überholen“.

Die Oberfläche des Wassers

Die Größe der Phasengrenzfläche zwischen flüssiger und gasförmiger Phase bestimmt die pro Zeiteinheit verdunstende Wassermenge (Verdunstungsgeschwindigkeit), da diese der Größe der Oberfläche proportional ist, sofern das Wasser nicht siedet. Die Oberflächengröße wiederum ist von der Gefäßform abhängig. Für die Beobachtung des Mpemba-Effekts ist eine große Oberfläche, die zu einem hohen Stoffmengenverlust durch Verdunstung führt, günstig.

Die Umgebungstemperatur bzw. die Temperatur des sogenannten Wärmereservoirs

Die absolute Temperaturdifferenz zwischen den anfänglichen Wassermengen und dem Reservoir bestimmt den Verlauf der Abkühlungskurve. Je größer die Differenz, desto steiler verlaufen die Abkühlungskurven, d. h. umso schneller kühlen die Proben allein durch Wärmeleitung und Wärmestrahlung ab und umso geringer ist der Stoffmengenverlust durch Verdunstung. Für die Beobachtung des Mpemba-Effekts ist deshalb eine Temperatur des Reservoirs knapp unterhalb des Gefrierpunkts von Wasser günstig, da die Reservoirtemperatur so einerseits tief genug für die Kristallisation des flüssigen Wassers ist, andererseits jedoch die Abkühlungskurven der flüssigen Phasen hinreichend flach verlaufen und eine maximale Wassermenge während der Abkühlung der flüssigen Phasen verdunsten kann.

Der Wärmeleitfähigkeitskoeffizient des Gefäßes

Dieser bestimmt, in welchem Maße die Abkühlung des Wassers über die Gefäßwand erfolgen kann. Je größer der Koeffizient, umso schneller kühlt das Wasser durch Wärmeableitung und Wärmestrahlung über das Gefäß ab. Für die Beobachtung des Mpemba-Effekts ist ein geringer Wärmeleitfähigkeitskoeffizient des Gefäßes insofern günstig, da dann mehr Wasser während des Abkühlens der flüssigen Phasen verdunsten kann, andererseits erschwert ein zu geringer Wärmeleitfähigkeitskoeffizient die Wärmeabführung der Kristallisationswärme über die Gefäßwand beim Gefrieren, was den Effekt wieder vermindert. Im praktischen Versuch sollten also beispielsweise keine Isoliergefäße verwendet werden.

Es bedarf noch wissenschaftlicher Versuche, ob und inwieweit der Mpemba-Effekt in gleicher oder vergleichbarer Weise sein paradoxes Ergebnis erzielt, wenn die beiden gefüllten Behälter auf Meereshöhe oder z. B. auf 7000 Metern Höhe und/oder sie am 45. Grad nördlicher Breite oder an einem der beiden Pole aufgestellt werden. Der Siedepunkt und auch der Gefrierpunkt in Grad Celsius bzw. der jeweils zugehörige Druck der Luftsäule am Ort der Messung gehören u. a. hochwahrscheinlich zu den „bestimmenden Bedingungen“ für das Messergebnis. Die Testreihen könnten zu einem Break-Even-Punkt führen, an welcher Stelle sich das Paradoxon auflöst und beide Wasserproben regelmäßig zu gleicher Zeit gefrieren.

Störparameter

Folgende Parameter sind für das Eintreten des Mpemba-Effektes nicht entscheidend, wenngleich sie ihn in verstärkender (positiver) oder abschwächender (negativer) Form zu stören vermögen. Deswegen sollten sie bei der Betrachtung von vornherein durch eine geeignete Wahl der Bedingungen ausgeschaltet werden. Unter besonderen experimentellen Bedingungen allerdings wird ein nicht vernachlässigbarer Beitrag dieser Effekte zum Mpemba-Effekt diskutiert.

Unterkühlte Flüssigkeiten bzw. Schmelzen

Kühlt man sehr reine Flüssigkeiten unter ihren Gefrierpunkt ab, so kann die Kristallisation ausbleiben, wenn keine Kristallisationskeime in der Flüssigkeit vorhanden sind. Zur Vermeidung kann man den Wasserproben einige Körnchen Quarzsand als Kristallisationsmatrix hinzufügen. Entgegen einer verbreiteten Ansicht ist die Konzentration (d. h. Menge) an Kristallisationskeimen für jeden Kristallisationsprozess bedeutungslos, entscheidend ist lediglich, ob es mindestens einen geeigneten Kristallisationskeim gibt oder nicht. Die Gefrierpunktserniedrigung durch fehlende Kristallisation ist im Übrigen unabhängig von der Tatsache, dass sich der Gefrierpunkt einer Flüssigkeit in Abhängigkeit von Druck und Volumen des Systems sowohl zu niedrigeren als auch zu höheren Werten hin verschieben kann (siehe dazu: Phasendiagramme von Einkomponentensystemen).

Prinzipiell wirkt sich der Effekt der unterkühlten Flüssigkeit aufgrund fehlender Kristallisationskeime nicht auf den Mpemba-Effekt aus, da er die ursprünglich kühlere Probe genauso betrifft, wie die ursprünglich wärmere. Sofern man allerdings unterstellt, dass das ursprünglich wärmere Wasser potentielle Kristallisationskeime – beispielsweise durch Ausgasen gelöster Fremdbestandteile wie Kohlendioxid – im Vergleich zum ursprünglich kühleren Wasser verliert, so würde der Effekt der unterkühlten Flüssigkeiten den Mpemba-Effekt abschwächen, da das ehedem heißere Wasser nun gerade nicht schneller gefrieren würde, sondern zur Unterkühlung neigte.

Temperaturgradienten

Temperaturunterschiede im System werden auch durch Temperaturgradienten angegeben. In einer unbewegten Flüssigkeit treten beim Abkühlen ebenso wie in der unbewegten Umgebung Temperaturdifferenzen auf. So ist beispielsweise die Temperatur an den Gefäßwänden und an der Phasengrenze geringer als im Inneren der Phase, in der Umgebung ist die Temperatur in der Nähe der Gefäße höher als in weiterer Entfernung von diesen. In unterschiedlich warmen Ausgangsgefäßen treten beim Abkühlen unterschiedliche Gradientenverläufe auf, die praktisch gleichbedeutend mit einer Änderung des Wärmeleitfähigkeitskoeffizienten des Gefäßes sind. Dieser Effekt wird durch das Rühren der Flüssigkeiten (z. B. Magnetrührer) während des Abkühlens und einem Gebläse im Reservoir, welches eine konstante und gleichförmige Reservoirtemperatur sicherstellt, vermieden.

Gelöste Fremdstoffe

Gelöste Stoffe (dazu gehören auch gelöste Gase) können den Gefrierpunkt einer Flüssigkeit erniedrigen (Raoultsches Gesetz), wobei die Gefrierpunkterniedrigung dem Fremdstoffmengenanteil proportional ist. Im Falle von gelösten Gasen (z. B. Kohlendioxid in Wasser) ist die Konzentration an gelöstem Gas wiederum temperaturabhängig (Dampfdruck!), das heißt die unterschiedlich warmen Wasserproben enthalten unter Gleichgewichtsbedingungen unterschiedliche Mengen gelöster Gase und haben damit auch einen geringfügig unterschiedlichen Gefrierpunkt. Der Effekt ist allerdings sehr klein (im Bereich von 0,01 K bis 0,001 K) und spielt damit praktisch für den Mpemba-Effekt keine Rolle. Der Einfluss gelöster Gase würde den Mpemba-Effekt verstärken, da das anfänglich heißere Wasser weniger gelöste Fremdbestandteile enthielte und darum sein Gefrierpunkt im Vergleich zum anfänglich kühleren Wasser weniger herabgesetzt wäre. Insgesamt vermeidet man diesen „Schmutzeffekt“, indem man für den Versuch entgastes Wasser (durch vorheriges Aufkochen und Anlegen eines Vakuums) verwendet. Analoges gilt auch für Volumen- und andere Effekte, die durch ausfrierende Gasbläschen verursacht werden könnten.

Sonstige Parameter

Wasserdampfpartialdruck

Der Wasserdampfpartialdruck in der gasförmigen Phase muss im Vergleich zum Sättigungsdampfdruck klein sein, da sonst kein beziehungsweise weniger Wasser verdunsten kann. Diese Bedingung ist in der Regel bei der Versuchsdurchführung in trockener Umgebung gewährleistet. Ein hoher Wasserdampfpartialdruck in der gasförmigen Phase eines offenen Systems würde den Mpemba-Effekt abschwächen.

Einflusslose Parameter

Druckabhängigkeit des Gefrierpunkts

Der exakte Gefrierpunkt von reinem Wasser ist wie bei jeder Flüssigkeit beziehungsweise Schmelze druckabhängig. Der genaue Wert kann dem sogenannten Phasendiagramm des Wassers entnommen werden. Bei Normaldruck (p = 1013,25 hPa) entspricht der Gefrierpunkt T = 0,000 °C bzw. T = 273,150 K. Der Gefrierpunkt des Wassers befindet sich bei der Bedingung p = 611,657 Pa (ca. 6 hPa) bei T = 0,010 °C bzw. T = 273,160 K. Bei anderen Drücken kann der Gefrierpunkt über oder unter diesem Wert für den Gefrierpunkt liegen. Diese Tatsache ist unabhängig von Gefrierpunktserniedrigungen durch gelöste Fremdbestandteile und unterkühlten Schmelzen aufgrund fehlender Kristallisationskeime.

Mikroskopische Struktur der Flüssigkeit

Mikroskopische Eigenschaften wie etwa die Struktur von Flüssigkeiten sind, abgesehen von ihrer Bedeutung für die kalorischen Daten der betrachteten Substanz, ohne Einfluss.

Andere Flüssigkeiten

Sofern der Mpemba-Effekt durch Verdunstungseffekte besteht, ist er nicht auf Wasser beschränkt (also keine Anomalie des Wassers).[14] Ob er auftritt, wird in diesem Fall hauptsächlich durch die kalorischen Daten einer Substanz bestimmt.[14] So weisen auch andere Substanzen wie etwa Ethanol, Essigsäure, Benzol oder Hexan eine ähnliche exponentielle Abhängigkeit des Dampfdrucks von der Temperatur auf. Allerdings liegen die Gefrierpunkte dieser Substanzen entweder wesentlich tiefer als die von Wasser, so dass der praktische Versuch höhere experimentelle Anforderungen an die notwendige Kühlung stellt, oder sie sind giftig oder entzündlich, so dass sich das Verdampfen in offenen Systemen ohne besondere Schutzmaßnahmen verbietet.

Nutzung des Mpemba-Effekts

Laut Mpemba wurde der Effekt bei der Herstellung von Speiseeis genutzt. Wenn die Zutaten dabei zur Homogenisierung und Haltbarmachung (Pasteurisieren) ohnehin erhitzt werden müssen, fällt es nicht ins Gewicht, dass die Ausnutzung des Effekts gegenüber dem direkten Kühlen gravierende Nachteile hat: Erhitzen und Abkühlen erfordert einen deutlich höheren Energieaufwand und dauert insgesamt auch deutlich länger als das Abkühlen allein.

Erwähnung in den Medien

Am 28. März 1999 wurde in der ARD-Wissenschaftssendung Kopfball der Mpemba-Effekt nachvollziehbar demonstriert und erklärt.

In der Sat.1-Infotainment-Fernsehsendung Clever! – Die Show, die Wissen schafft vom 13. März 2006 (Sendung 39) wurde der Mpemba-Effekt durch Abkühlung von unterschiedlichen, nicht bestimmten Ausgangsmengen Wasser unterschiedlicher, nicht bestimmter Zusammensetzung (Mineralwasser, destilliertes Wasser, Leitungswasser) und unterschiedlicher Temperatur in einem offenen System demonstriert.[15] Wie zu sehen war, erfolgten Versuchsaufbau und -durchführung damit unter weitgehend undefinierten Ausgangs- und Endbedingungen. Die in der Sendung angegebene Erläuterung des Effektes ist unzutreffend.

Am 21. Januar 2010 berichtete der WDR in Die Kleine Anfrage im Rahmen der Radiosendung Leonardo über den Mpemba-Effekt, wobei einige O-Töne von Mpemba eingespielt wurden.[16]

Am 26. Juni 2012 lobte die Londoner Royal Society of Chemistry 1000 britische Pfund aus, um die weitere Erklärung des Effektes zu fördern.[17] Nikola Bregovic, Chemiker an der Universität Zagreb, wurde im Januar 2013 als der Gewinner verkündet: Er war zu dem Schluss gekommen, dass auch er keine abschließende Lösung finden konnte, und stellte fest: „Wieder einmal überrascht und fasziniert uns dieses kleine, einfache Molekül mit seiner Magie.“[18]

In den sozialen Medien (z. B. YouTube) wetteifern manche mit besonderen Effekten.[19]

Literatur

Zwei Artikel desselben Autors in englischer Sprache mit zahlreichen Quellenangaben, auch zu den historischen Autoren wie Aristoteles, Bacon, Descartes:

Weblinks

Einzelnachweise

  1. 1,0 1,1 Erasto B. Mpemba, Denis G. Osborne: Cool? In: Institute of Physics IOP (Hrsg.): Physics Education. Band 4, Nr. 3. IOP Publishing, 1. Mai 1969, ISSN 1361-6552, S. 172–175, doi:10.1088/0031-9120/4/3/312 (iop.org).
  2. Julius Ludwig Ideler (Hrsg.): {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value). Aristotelis meteorologicorum. Band 1, Friedrich Christian Wilhelm Vogel, Leipzig 1834, S. 44 (griechisch mit lateinischer Übersetzung); Ernst Grumach, Hellmut Flashar (Hrsg.): Meteorologie/Über die Welt, Aristoteles Werke 12.1./2., 3. Auflage, Akademie-Verlag, Berlin 1984, S. 30 (deutsche Übersetzung von Hans Strohm)
  3. John Henry Bridges (Hrsg.): The ‘Opus Majus’ of Roger Bacon Band 2, Clarendon, Oxford 1897, S. 169 (lateinisch); The Opus Majus of Roger Bacon Band 2, Russell & Russell, New York 1962, S. 584 (englische Übersetzung von Robert Belle Burke)
  4. Instauratio magna mit Novum Organum, John Bill, London 1620, S. 345 (lateinisch); Franz Baco’s Neues Organon, L. Heimann, Berlin 1870, S. 370 (deutsche Übersetzung von J. H. v. Kirchmann)
  5. Discours de la méthode. La dioptrique. Les météores. La géométrie, Ian Maire, Leiden 1637, S. 164 (französisch); Discourse on Method, Optics, Geometry, and Meteorology, Hackett, Indianapolis 2001, S. 268 (englische Übersetzung von Paul J. Olscamp)
  6. Joseph Black: The Supposed Effect of Boiling upon Water, in Disposing It to Freeze More Readily, Ascertained by Experiments. By Joseph Black, M. D. Professor of Chemistry at Edinburgh, in a Letter to Sir John Pringle, Bart. P. R. S. In: Philosophical Transactions of the Royal Society of London. 65. Jahrgang, 1. Januar 1775, S. 124–128, doi:10.1098/rstl.1775.0014.
  7. Ludw. Christian Lichtenberg, Friedrich Kries (Hrsg.): G. Ch. Lichtenberg’s vermischte Schriften Band 7, Ignaz Klang, Wien 1844, S. 164; mit Bezug auf den Artikel Eis in Johann Samuel Traugott Gehler: Physikalisches Wörterbuch Band 1, Schwickert, Leipzig 1787, S. 676
  8. The Mpemba Effect: A brief history. (Memento des Originals vom 3. Juni 2013 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.rsc.org Royal Society of Chemistry, 2013
  9. Henry C. Burridge, Paul F. Linden: Questioning the Mpemba effect: hot water does not cool more quickly than cold. In: Scientific Reports. Band 6, Nr. 1, 24. November 2016, ISSN 2045-2322, S. 37665, doi:10.1038/srep37665 (nature.com [abgerufen am 13. Januar 2021]).
  10. 10,0 10,1 10,2
  11. David Auerbach: Supercooling and the Mpemba effect: When hot water freezes quicker than cold. In: American Association of Physics Teachers (Hrsg.): American Journal of Physics. Band 63, Nr. 10. AIP Publishing, Oktober 1995, ISSN 0002-9505, S. 882–885, doi:10.1119/1.18059 (robot-tag.com [PDF]).
  12. Kathrin Passig, Aleks Scholz: Lexikon des Unwissens : worauf es bisher keine Antwort gibt. Rowohlt-Taschenbuch-Verlag rororo, Reinbek bei Hamburg 2008, ISBN 978-3-499-62230-4, Wasser, S. 239–242.
  13. Philipp Nagels: Mpemba-Effekt: Darum gefriert heißes Wasser schneller als kaltes. In: Axel Springer SE (Hrsg.): welt.de > kmpkt. 1. März 2018 (welt.de [abgerufen am 14. Juni 2019]).
  14. 14,0 14,1 Heiner Grimm: Mpemba-Effekt: Heißes Wasser gefriert schneller als kaltes Wasser? Berechnung des Mpemba-Effekts und experimentelle Untersuchung; Wasser-Verdunstung. In: Wasser. Heiner Grimm, abgerufen am 14. Juni 2019.
  15. Das „Clever“ – Wissensbuch: Die wissenschaftlichen Erläuterungen aus Sendung 39 (Memento vom 1. Juli 2010 im Internet Archive) sat1.de
  16. Die Kleine Anfrage: Warum gefriert warmes Wasser schneller als kaltes? In: wdr5.de, 21. Januar 2010, 16:05 Uhr.
  17. The Mpemba effect: competition and resources. Royal Society of Chemistry
  18. Wie heißes Wasser schockgefrostet wird. In: Süddeutsche Zeitung, 8. Januar 2014
  19. https://www.youtube.com/results?search_query=mpemba+effekt