In der Mathematik bezeichnet man mit Niveaumenge oder Levelmenge die Menge aller Punkte des Definitionsbereichs einer Funktion, denen der gleiche Wert zugeordnet ist. Eng verwandte Begriffe für Funktionen mit Werten in einer geordneten Menge sind die der Subniveaumenge, die alle Punkte enthält, deren Funktionswerte einen vorgegebenen Wert nicht überschreiten, und der Superniveaumenge, die alle Punkte enthält, deren Funktionswerte einen vorgegebenen Wert nicht unterschreiten.
Es seien $ U,V $ Mengen, $ f\colon U\to V $ eine Funktion und $ c\in V $ ein Wert aus der Zielmenge, dann heißt
die Niveaumenge der Funktion $ f $ zum Niveau bzw. Level $ c $.
Trägt $ V $ eine Ordnungsrelation $ \leq $ (mit Umkehrrelation $ \geq $), können wir folgende Begriffe definieren.
Als Subniveaumenge wird die Menge
bezeichnet, im Falle $ V=\mathbb {R} $ ist $ {\mathcal {L}}_{f}^{\leq }(c)=f^{-1}(\left(-\infty ,c\right]) $.
Als Superniveaumenge wird die Menge
bezeichnet, im Falle $ V=\mathbb {R} $ ist $ {\mathcal {L}}_{f}^{\geq }(c)=f^{-1}(\left[c,\infty \right)) $.
Für zweidimensionale Skalarfelder ist diese Menge zumeist eine Linie und man spricht von einer Isolinie oder Niveaulinie. Für dreidimensionale Skalarfelder (zum Beispiel für skalare Potentialfelder) ist diese Menge zumeist eine gekrümmte Fläche und man nennt sie Isofläche oder Niveaufläche (z. B. Höhenlinien).
Der Begriff Niveaufläche wird aber auch für andere Kraftfelder wie einem elektrischen Feld oder einem Magnetfeld verwendet.
Für eine Produktionsfunktion $ f\colon (0,\infty )^{n}\to (0,\infty ) $ sowie ein Produktionsniveau $ c\in (0,\infty ) $ ist $ {\mathcal {N}}_{f}(c)=f^{-1}(c) $ die Menge aller Bündel von Produktionsfaktoren, mit denen sich die Menge $ c $ generieren lässt. Die Menge $ {\mathcal {N}}_{f}(c) $ wird als Isoquante zum Produktionsniveau $ c $ bezeichnet.[1]
Ist die Funktion reell-vektorwertig, hat also als Bildraum den $ \mathbb {R} ^{n} $ und ist dieser mit einer verallgemeinerten Ungleichung $ \preccurlyeq _{K} $ versehen, so lässt sich die Subniveaumenge verallgemeinern zu
und die Superniveaumenge zu