Ein optisches Spektrometer ist ein Spektrometer für sichtbares Licht und daran angrenzende Bereiche des elektromagnetischen Spektrums. Mit ihm können sowohl Emissionsspektren (spektrale Untersuchungen von Lichtquellen) als auch Absorptionsspektren und Aussagen zur frequenzabhängigen Reflexion gewonnen werden.
Folgender Aufbau ist typisch für ein Gitterspektrometer im VIS- oder NIR-Bereich:
Eine Lichtquelle LQ, je nach Wellenlängenbereich z. B.:
Ein Abbildungssystem (im Bild zwei Spiegel) bildet die Lichtquelle LQ auf den Monochromatoreintrittsspalt ab. Ein justierbarer Monochromator M dient zum Einstellen der hindurchtretenden Wellenlänge. Er wird z. B. durch einen Schrittmotor angetrieben und liefert auch den Wert der Wellenlänge zur Auswertung.
Mit einem weiteren Abbildungssystem L1, L2 wird die Strahlung vom Monochromatoraustrittsspalt auf die Probe fokussiert.
Die zu untersuchende Probe P ist im Bild beispielsweise ein Reflektor. In anderen Fällen wird eine Probenkammer (Küvette) durchstrahlt oder die Lichtquelle selbst ist das zu untersuchende Objekt.
Mit dem Abbildungssystem L3, L4 wird das Signal auf einen Fotoempfänger PM abgebildet. Als Empfänger PM (siehe auch Strahlungsdetektor) kommen in Frage:
Ein Registrier- und Analysesystem führt die momentanen Werte von Monochromator-Wellenlänge und Empfängersignal zusammen, stellt sie in einer Messkurve dar und analysiert sie. Heute ist dies meist ein Computer mit entsprechenden Schnittstellen plus Software.
Es werden kompakte Geräte angestrebt, die einfach in beliebige Anwendungen eingesetzt werden können. Dabei soll auf alle beweglichen Teile verzichtet werden, was die benötigte Baugröße stark reduziert und auch die Reproduzierbarkeit der Messungen verbessert. Das wird erreicht, indem das in Farben zerlegte Licht von einer Photodiodenzeile empfangen und ausgewertet wird, wobei jeder einzelne Sensor für einen bestimmten Wellenlängenbereich (immer denselben) da ist. Die Messwerte für das komplette Spektrum liegen also parallel an den Einzelsensoren vor. Teile der Abbildungsoptik sind manchmal in Faseroptik ausgeführt.[1][2]
Das hat gewisse Folgen für den Aufbau:
FT-Spektrometer arbeiten nach dem Prinzip eines Interferometers, bei diesen wird das Signal während der Verstellung des Interferometers computergestützt anhand der Fouriertransformation (FT) hinsichtlich der enthaltenen Frequenzen ausgewertet. Hauptvorteil der FT-Spektrometer ist die geringere Messzeit, da im Gegensatz zu dispersiven Systemen (Prismen- oder Gitterspektrometer) die Probe nicht Schritt für Schritt mit einer sich ändernden Frequenz bestrahlt werden muss. Eingesetzt werden diese Spektrometer vor allem im Infrarotbereich (siehe auch: FTIR-Spektrometer), auf dem Markt sind aber auch FT-Spektrometer für andere spektroskopische Verfahren wie die Raman-Spektroskopie erhältlich.
Bei bestimmten Untersuchungen zur Fotoleitung bildet die Probe selbst den Empfänger, so dass eines der Abbildungssysteme und der Fotoempfänger entfallen.
Im MIR und Ultraviolett ab etwa 200 nm müssen die Abbildungen mit Hohlspiegeln (z. B. Aluminium auf Glas) erfolgen, da Glas nicht mehr transparent ist. Spiegel haben überdies den Vorteil einer wellenlängenunabhängigen Abbildungsgeometrie, während Linsen ohne Nachstellung nur für einen jeweils engen Spektralbereich verwendbar sind.
Zwischen Lichtquelle und Monochromator wird oft noch ein Modulator angeordnet, um bei der Auswertung des Empfängersignals das Signal besser vom Umgebungslicht abgrenzen zu können. Der Modulator kann z. B. ein Polarisationsmodulator oder eine einfache Chopperscheibe sein.
Es gibt auch Spektrometer mit einem Polychromator, die das Spektrum nicht sequenziell durchscannen, sondern simultan aufnehmen. Dabei wird das dispergierende bzw. brechende Element erst hinter der Probe angeordnet und das Spektrum von einer Zeilenkamera, also einer linearen Anordnung von Fotodioden, simultan empfangen, so dass die Auswerteelektronik nur noch diese Reihe von Empfängern abfragen und registrieren muss. Siehe auch Diodenarraydetektor.
Echelle-Polychromatoren verwenden Flächendetektoren zur Auswertung des Spektrums.
Optische Spektrometer werden vorwiegend zur Festkörperspektroskopie eingesetzt:
Zumindest die Absorptionsmessungen können per Küvette auch an Flüssigkeiten und im Extremfall an Gasen durchgeführt werden.
Je nach Details der Fragestellungen werden verschiedene optische Modulatoren eingesetzt, um ein Wechsellichtsignal zu erhalten, das gewisse (beispielsweise magnetooptische) Eigenschaften der Probe gezielt anspricht und das als elektrisches Signal nach dem Empfänger besser weiterverarbeitet werden kann (beispielsweise per Lock-in-Verstärker).