Als Raman-Streuung (auch Raman-Effekt oder Smekal-Raman-Effekt) wird die unelastische Streuung von Licht an Atomen oder Molekülen bezeichnet. Sie ist nach Chandrasekhara Raman benannt, der den Effekt 1928 erstmals nachweisen konnte.
Durch die unelastische Wechselwirkung findet eine Energieübertragung statt, d. h., das emittierte Streulicht besitzt eine höhere oder niedrigere Frequenz als der einfallende Lichtstrahl und ist spezifisch für das streuende Atom bzw. Molekül. Aufgrund des kleineren Streuquerschnittes ist der Anteil des frequenzverschobenen Lichtes jedoch um einen Faktor 103 bis 104 geringer als der des elastisch gestreuten Lichtes, welches als Rayleigh-Streuung bezeichnet wird.
Der Effekt wurde 1923 von Adolf Smekal vorhergesagt[1] – deswegen auch ab und zu Smekal-Raman-Effekt – und am 28. Februar 1928[2] durch C. V. Raman und Kariamanickam Srinivasa Krishnan (an Flüssigkeiten) sowie unabhängig davon durch Grigory Landsberg und Leonid Mandelstam (an Kristallen) nachgewiesen. Raman erhielt dafür 1930 den Nobelpreis in Physik.[3][4][5]
Findet eine Wechselwirkung zwischen einem Photon und einem Molekül bzw. Kristall statt, so kommt es mit einer sehr geringen Wahrscheinlichkeit zu einer Energieübertragung zwischen dem anregenden Photon und der angeregten Materie, bei der sich die Rotations- und Schwingungsenergie des beteiligten Moleküls bzw. die Schwingungsenergie im Kristallgitter ändert. Beide Richtungen der Energieübertragung sind möglich:
Die Energiedifferenz zwischen eingestrahltem und gestreutem Photon ist über das Plancksche Wirkungsquantum linear mit der Raman-Frequenzverschiebung verknüpft und charakteristisch für das streuende Molekül:
Liegt das streuende Molekül in gasförmiger oder flüssiger Phase vor, so werden Molekülschwingungen und -drehungen betrachtet. Handelt es sich bei der Probensubstanz um einen kristallinen Festkörper, sind Gitterschwingungen (Phononen), Elektron-Loch-Anregungen oder Spinflip-Prozesse für den Raman-Effekt verantwortlich.
Bei der Fluoreszenz wird das System durch Absorption eines Photons angeregt und emittiert nach der Lebensdauer des angeregten Zustands wiederum ein Photon, dessen Energie kleiner oder gleich der des ursprünglichen ist. Voraussetzung für das Auftreten von Fluoreszenz ist, dass das ursprüngliche Photon resonant zu einem atomaren Übergang sein muss. Die Raman-Streuung hingegen ist kein Resonanzphänomen. Die Streuung erfolgt hier – wie beispielsweise auch die Rayleigh-Streuung – über virtuelle Niveaus, tritt also auch für Photonenenergien außerhalb einer atomaren Resonanz auf.
Zur Berechnung der Wechselwirkung von Materie und Licht dient der Raman-Tensor $ {\mathbf {R}} $, der den Zusammenhang der Streuintensität $ I_{\mathrm {s} } $ mit der Polarisation $ {\hat {e}}_{\mathrm {i} } $ des eingestrahlten Lichts und der Polarisation $ {\hat {e}}_{\mathrm {s} } $ des gestreuten Lichts beschreibt:
Da $ {\hat {e}}_{\mathrm {i} } $ und $ {\hat {e}}_{\mathrm {s} } $ experimentell frei wählbar sind, bestimmt allein der Raman-Tensor das Streuverhalten der Materie. Er wird sowohl durch die Symmetrie des Festkörpers (bzw. Moleküls) als auch durch die Symmetrie der Gitterschwingung (bzw. Molekülschwingung) vorgegeben. Entscheidend ist hier die Kenntnis der Punktgruppen und der möglichen Symmetrieoperationen.
Mit Hilfe des Raman-Tensors lassen sich die Raman-Auswahlregeln bestimmen.
Während man in der Atom- und Molekülphysik unter dem Raman-Effekt meist die inelastische Streuung von Licht an Gitterschwingungen versteht, meint man in der Plasmaphysik damit die Streuung an Plasmawellen. Das Licht verstärkt die Plasmawelle während des Streuprozesses (Raman-Instabilität). Das Plasma wird dabei aufgeheizt.
In der Vorwärtsrichtung sieht man im Spektrum zwei spektrale Seitenbänder mit den Frequenzen
wobei
In Rückwärtsrichtung sieht man meistens nur die Laserfrequenz $ \omega _{\mathrm {L} } $ und die Stokesfrequenz
Für ein Elektronengas im metallischen Festkörper gilt:
Wenn die Frequenz des anregenden Photons resonant ist mit einem elektronischen Übergang im Molekül bzw. Kristall ist, ist die Streueffizienz um zwei bis drei Größenordnungen erhöht.
Phonon-Raman-Streuung bezeichnet die inelastische Lichtstreuung an optischen Gitterschwingungen (optischen Phononen) in Kristallen. Die Streuung an akustischen Phononen nennt man Brillouin-Streuung.
Der Zustandsraum der Phononen im kristallinen Festkörper kann durch die Phonon-Bandstruktur veranschaulicht werden. Es handelt sich dabei um Energieflächen im Raum der Wellenzahlen. Ein Festkörper aus N Einheitszellen mit r-atomiger Basis besitzt im Dreidimensionalen 3r Dispersionszweige mit je N Schwingungszuständen, also insgesamt 3Nr Schwingungsmodi. Diese 3r Dispersionszweige teilen sich in 3 akustische Zweige und 3r-3 optische Zweige auf. Für akustische Phononen verschwindet die Frequenz im Grenzfall langer Wellenlängen linear, die Steigung ist durch die Schallgeschwindigkeit gegeben. Optische Phononen haben dagegen eine feste endliche Frequenz im Grenzfall langer Wellenlängen.
Da die Wellenlänge von sichtbarem Licht deutlich größer ist (mehrere Potenzen) als der Atomabstand im Festkörper, bedeutet dies im reziproken Raum, dass die Anregung von Gitterschwingungen durch Licht nahe am Γ-Punkt stattfindet, d. h. im kleinen Bereich um das Zentrum der 1. Brillouin-Zone. Das hat zur Folge, dass der Impulsübertrag nur sehr klein ist. Eine Anregung von mehreren Phononen, deren Gesamtimpuls nahe Null ist, ist ebenfalls möglich (Mehrphononenprozess). Ein Beispiel ist die Anregung von zwei entgegengesetzt laufenden transversal-akustischen Phononen am X-Punkt (2TAX), deren Energien sich addieren. Ihr Gesamtimpuls ist aber null.
Streuung von hochenergetischen elektromagnetischen Wellen (mind. Röntgenstrahlung) an freien (bzw. quasifreien) Elektronen bezeichnet man als Compton-Streuung. Da keine inneren Freiheitsgrade angeregt werden, ist der Stoß elastisch. Bei dem Streuprozess wird Energie auf das Elektron übertragen: Dessen Impuls vergrößert sich, daher ist die Streuung inelastisch. Bei kleineren Energien des einfallenden Lichtes ist der Impulsübertrag vom streuenden Licht auf das Elektron jedoch vernachlässigbar. Diese Streuung ist elastisch und heißt Thomson-Streuung.
Die Raman-Streuung bildet die Grundlage für die Raman-Spektroskopie, die zur Untersuchung von Materialeigenschaften wie Kristallinität, Kristallorientierung, Zusammensetzung, Verspannung, Temperatur, Dotierung usw. eingesetzt wird. Des Weiteren wird die Raman-Streuung und deren Temperaturabhängigkeit in Glasfasern für die ortsaufgelöste Faseroptische Temperaturmessung (engl. {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value), DTS) genutzt.
Bei der Multi-Axis- oder satellitengestützten differenziellen optische Absorptionsspektroskopie in Luft müssen die aufgenommenen Spektren entsprechend der Ramanstreuung korrigiert werden, um Rückschlüsse auf Absorber mit geringerer optischer Dichte ziehen zu können. Die Ramanstreuung bewirkt, dass die Fraunhoferlinien und Absorptionslinien atmosphärischer Absorber, je nach Lichtweglänge und Streuwinkel in der Atmosphäre, „aufgefüllt“ werden. Die so erklärten optischen Dicken betragen bis zu 0,1.[6] Hierzu tragen sowohl Rotations- als auch Vibrationsramanstreuung und die Kombination der beiden Effekte bei [7].
Dieser Effekt wurde erstmals von Martin Fleischmann et al. 1974 bei der Untersuchung der Adsorption von Pyridin auf einer rauen Silberelektrodenoberfläche beobachtet.[8] Sie erklärten die gefundenen Intensitäten der Raman-Signale damit, dass die durch die Rauheit entsprechend größere Oberfläche eine erhöhte Absorption von Pyridin-Molekülen ermöglicht und somit höhere Signalintensitäten bedingt, weshalb sie ihrer Entdeckung keine angemessene Bedeutung beimaßen. Somit geht die eigentliche Entdeckung des SERS-Effekts auf Jeanmaire und van Duyne sowie Albrecht und Creighton zurück.[9][10]
Raman-Streuung von Molekülen besitzt einen sehr kleinen Streuquerschnitt (ca. 10−30 cm²[11]), so dass man eine relative hohe Konzentration an Molekülen benötigt, um ein detektierbares Signal zu erhalten; Raman-Spektren einzelner Moleküle sind so nicht möglich. Wenn sich das Molekül aber nahe einer metallischen Oberfläche (vor allem Silber und Gold) befindet, kann das Raman-Signal extrem verstärkt werden. Dies ist die so genannte oberflächenverstärkte Raman-Streuung ({{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value), SERS). Hierbei werden zwei Mechanismen diskutiert:
Wenn beide Effekte zusammen mit dem Resonanz-Raman-Effekt wirken, ist es möglich, Raman-Spektren einzelner Moleküle zu detektieren.
Die Möglichkeit, verschiedene Zusammensetzungen von Stoffen im Nanogramm-Bereich zu detektieren, macht die oberflächenverstärkte Raman-Spektroskopie zu einer vielfältig einsetzbaren analytischen Methode in den Bereichen Pharmazie, Materialwissenschaften, Forensik und Sicherheitswissenschaften. Unter anderem Drogen- und Explosivstoff-Detektoren sind in diesem Bereich mögliche Einsatzgebiete.[12][13][14]