Ein Schallschatten (engl. acoustic shadow) oder eine Schallabschattung entsteht, wenn sich auf dem direkten Schallweg von der Schallquelle zum Hörer oder zum Mikrofon Hindernisse befinden, z. B. Säulen oder Menschen. Die entstehende Abschattung (Schattenraum) ist ein Gebiet verminderten Schalldrucks oder Schalldruckpegels auf der schallquellen-abgewandten Seite des Hindernisses.
Alle Schallanteile, deren Wellenlänge größer als die Ausdehnung der Hindernisse sind, werden um das Hindernis herumgebeugt. Der Schallschatten wird durch diese Schallbeugung „aufgehellt“, er ist daher - wie bei der Beugung von Licht - kein scharfer Schatten, sondern eine breite Zone mit mehr oder weniger ausgeprägten Klangverfärbungen, d.h. „Verdumpfungen“ des Klangbilds. Die Schallgrenze oder Schattengrenze ist mehr oder weniger verwaschen.
Die Wirkung eines Hindernisses im Schallfeld ist umso stärker, je größer das Hindernis ist:
Mit dem Kopf als Hindernis schatten sich die Ohrmuscheln gegenseitig ab. Aufgrund des geringen Ohrabstandes d = 21 cm wird der Schallschatten erst von einer recht hohen Frequenz an wirksam:
Daraus ergeben sich Verschiebungen des Frequenzgangs, die es dem Ohr ermöglichen, nicht nur – über die Laufzeit und den Pegel – rechts von links zu unterscheiden, sondern auch vorne von hinten und oben von unten (Richtungshören). Dieser Effekt wird etwa in Raumklang-Simulationen über geeignete Hochpassfilter an bestimmten Kanälen erzeugt.[1]
Um den Schallschatten auszunutzen, werden in der Praxis vielfach Trennwände als Schallhindernisse zur akustischen Trennung der Schallwellen eingesetzt. Für die begrenzte Wirkung solcher Schallschirme verantwortlich ist das Eindringen von Schall in den Schattenbereich hinter dem Hindernis aufgrund von Beugungseffekten.
1968 präsentierte der Japaner Maekawa ein Modell zur Berechnung der Schallabschirmung an langen ebenen Wänden. Als Basis dienten eine Reihe von Messungen, deren Ergebnis als Funktion der aus der Optik bekannten Fresnel-Zahl $ N_{F} $ ausdrückt wurden. Ergebnis ist ein empirisches Gesetz, nach dem man die Schallpegeldifferenz $ \Delta L $ berechnen kann, die durch das Hindernis verursacht wird.[2]
mit
Alle Punkte, die unterhalb der Sichtlinie der Quelle liegen, weisen eine Pegelabsenkung von mindestens 5 dB auf.
Das Modell ermöglicht auch negative Fresnel-Zahlen bis -0,1 für Punkte oberhalb der Sichtlinie:
Da dieses Gesetz nur empirisch ermittelt wurde, hat es einen limitierten Einsatzbereich: Distanzen von weniger als 100 m zwischen Lärmquelle und Empfänger sowie Lärmhindernisse von mindestens 1 m Höhe. Die Entfernung spielt eine entscheidende Rolle, da für derart kurze Distanzen von annähernd linearer Lärmausbreitung ausgegangen werden kann - Wetterphänomene und Temperaturgradienten haben noch keinen Einfluss.
In der Sonographie bezeichnet man die Bildauslöschung hinter einer stark reflektierenden ("echoreichen") Struktur als Schallschatten. Eine im klinischen Alltag häufige Ursache für einen Schallschatten sind Gallensteine.