Der Dirac-Operator ist ein Differentialoperator, der eine Quadratwurzel aus dem Laplace-Operator ist. Der ursprüngliche Fall, mit dem sich Paul Dirac beschäftigte, war die formale Faktorisierung eines Operators für den Minkowski-Raum, der die Quantentheorie mit der speziellen Relativitätstheorie verträglich macht.
Es sei $ D\in \operatorname {Diff} ^{1}(V,V) $ ein geometrischer Differentialoperator erster Ordnung, der auf ein Vektorbündel $ V\to M $ über einer riemannschen Mannigfaltigkeit $ M $ wirkt. Wenn dann
gilt, wobei $ \Delta $ ein verallgemeinerter Laplace-Operator auf $ V $ ist, so heißt $ D $ Dirac-Operator.[1]
Ursprünglich hatte Paul Dirac die Wurzel aus dem D’Alembertoperator $ \square $ betrachtet und damit die relativistische Quantenfeldtheorie eines Elektrons begründen wollen.
Dirac betrachtete für n=4 den Differentialoperator
wobei $ \gamma _{i} $ die Dirac-Matrizen sind. Dieser ist jedoch nach heutigem Verständnis kein Dirac-Operator mehr.[2]
In den 1960ern griffen Michael Francis Atiyah und Isadore M. Singer diesen von Dirac definierten Differentialoperator auf und entwickelten daraus den hier im Artikel hauptsächlich beschriebenen (verallgemeinerten) Dirac-Operator. Der Name Dirac-Operator wurde von Atiyah und Singer geprägt. Der Operator beeinflusste die Mathematik und die mathematische Physik des 20. Jahrhunderts stark.[3]
Es sei $ (M,g) $ eine riemannsche Mannigfaltigkeit und $ ({\mathcal {E}},h,\nabla ^{\mathcal {E}}) $ ein Dirac-Bündel, bestehend aus einem Clifford-Modul $ {\mathcal {E}}\to M $ einer hermiteschen Metrik $ h $ auf $ {\mathcal {E}} $ und einem Clifford-Zusammenhang $ \nabla ^{\mathcal {E}} $ auf $ {\mathcal {E}} $. Dann ist der Operator
der zum Dirac-Bündel $ (E,h,\nabla ^{\mathcal {E}}) $ assoziierte Dirac-Operator. In lokalen Koordinaten hat er die Darstellung
Der Operator $ -i\partial _{x} $ ist ein Dirac-Operator über dem Tangentialbündel von $ \mathbb {R} $.
Betrachtet werde der Konfigurationsraum eines Teilchens mit Spin 1/2, das auf die Ebene $ \mathbb {R} ^{2} $ beschränkt ist, welche die Basis-Mannigfaltigkeit bildet. Der Zustand wird durch eine Wellenfunktion ψG mit zwei komplexen Komponenten beschrieben, für die also jeweils $ \mathbb {R} ^{2}\to \mathbb {C} \, $ gelten soll, wobei Gesamtzustände, die sich nur um einen komplexen Faktor unterscheiden, identifiziert werden. Der Gesamtzustand ist also:
Dabei sind $ x $ und $ y $ die üblichen kartesischen Koordinaten auf $ \mathbb {R} ^{2} $: $ \chi _{\uparrow } $ definiert die Wahrscheinlichkeitsamplitude für die aufwärts gerichteten Spin-Komponente (Spin-Up), und analog $ \eta _{\downarrow } $ für die Spin-Down-Komponente. Der sogenannte Spin-Dirac-Operator kann dann geschrieben werden als
wobei σx und σy die Pauli-Matrizen sind. Man beachte, dass die antikommutativen Beziehungen der Pauli-Matrizen einen Beweis der obigen Definition trivial machen. Diese Beziehungen definieren den Begriff der Clifford-Algebra#Beispiele am Beispiel der Quaternionen-Algebra. Lösungen der Dirac-Gleichung für Spinor-Felder werden oft harmonische Spinoren genannt[4].
Sei $ (M,g) $ eine orientierbare riemannsche Mannigfaltigkeit und sei $ \mathrm {d} \colon {\mathcal {A}}(M)^{\bullet -1}\to {\mathcal {A}}^{\bullet }(M) $ die äußere Ableitung und $ \mathrm {d} ^{t}\colon {\mathcal {A}}^{\bullet }(M)\to {\mathcal {A}}^{\bullet -1}(M) $ der zur äußeren Ableitung bezüglich der L²-Metrik adjungierte Operator. Dann ist
ein Dirac-Operator.[5]
Es gibt auch einen Dirac-Operator in der Clifford-Analysis. Im n-dimensionalen euklidischen Raum, d. h. für $ \mathbb {R} ^{2}\to \mathbb {R} ^{n}\,, $ ist das
$ D=\sum _{j=1}^{n}e_{j}{\frac {\partial }{\partial x_{j}}} $
wobei
$ \{e_{j}:j=1,\ldots ,n\} $
eine Orthonormal-Basis des euklidischen Raumes ist und $ \mathbb {R} ^{n} $ in eine Clifford-Algebra eingebettet ist. Dies ist ein Spezialfall des Atiyah-Singer-Dirac-Operators, der auf den Schnitten eines Spinor-Bündels wirkt.
Für eine Spin-Mannigfaltigkeit $ M $, ist der Atiyah-Singer-Dirac-Operator lokal folgendermaßen definiert:
Für $ x\in M $ und $ e_{1}(x),\ldots ,e_{j}(x) $ eine lokale Orthonormalbasis für den Tangentenraum von $ M $ in $ x $ ist der Atiyah-Singer-Dirac-Operator
$ \sum _{j=1}^{n}e_{j}(x){\tilde {\Gamma }}_{e_{j}(x)} $,
wobei $ {\tilde {\Gamma }} $ ein Paralleltransport des Levi-Civita-Zusammenhangs auf $ M $ für das Spinor-Bündel über $ M $ ist.
Das Hauptsymbol eines verallgemeinerten Laplace-Operators ist $ \xi \mapsto \|\xi \|^{2} $. Entsprechend ist das Hauptsymbol eines Dirac-Operators $ \xi \mapsto \|\xi \| $ und somit sind beide Klassen von Differentialoperatoren elliptisch.
Der Operator $ D\colon C^{\infty }(\mathbb {R} ^{k}\otimes \mathbb {R} ^{n},S)\to C^{\infty }(\mathbb {R} ^{k}\otimes \mathbb {R} ^{n},\mathbb {C} ^{k}\otimes S) $, der auf die nachfolgend definierten spinorwertige Funktionen wirkt,
wird in der Clifford-Analysis oft als Dirac-Operator in k CliffordVariablen genannt. In dieser Notation ist S der Raum von Spinoren, $ x_{i}=(x_{i1},x_{i2},\ldots ,x_{in}) $ sind n-dimensionale Variablen und $ \textstyle \partial _{\underline {x_{i}}}=\sum _{j}e_{j}\cdot \partial _{x_{ij}} $ ist der Dirac-Operator in der $ i $-ten Variablen. Dies ist eine gebräuchliche Verallgemeinerung des Dirac-Operators (k=1) und der Dolbeault-Kohomologie (n=2, k beliebig). Er ist ein Differentialoperator, der invariant zu der Operation der Gruppe $ \operatorname {SL} (k)\times \operatorname {Spin} (n) $ ist. Die Injektive Auflösung von D ist nur für einige Spezialfälle bekannt.