Die Hauptstreckungen $ \lambda _{1},\lambda _{2},\lambda _{3} $ bezeichnen in der Kontinuumsmechanik die drei Hauptwerte der einander mathematisch ähnlichen rechten und linken Deformationstensors U bzw. v. Man erhält die Hauptstreckungen aus der Hauptachsentransformation des Deformationstensors durch Lösung des charakteristischen Polynoms.
Im Hauptachsensystem des Deformationstensors geben die Streckungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \lambda die aktuelle Länge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): l eines Linienelements bezogen auf seine Ausgangslänge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): l_0 wieder und stehen daher mit der Dehnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varepsilon im Zusammenhang:
Mithilfe dieser Streckungen lassen sich ebenfalls die Deformationsinvarianten in der Festkörpermechanik (Kontinuumsmechanik der Festkörper) recht einfach darstellen.
Denn der rechte und linke Deformationstensor ergeben sich aus der Polarzerlegung[1]
des Deformationsgradienten F, siehe Bild. Darin ist R ein eigentlich orthogonaler Tensor, der eine Drehung darstellt und die Eigenschaften RT · R = R · RT = 1 und det(R) = +1 besitzt (1 ist der Einheitstensor). Der Deformationsgradient transformiert Linienelemente Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{d}\vec X im undeformierten Körper in die Linienelemente Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{d}\vec x des deformierten Körpers:
Damit lautet die Streckung eines Linienelements in der Lagrange’schen Betrachtungsweise:
denn die Drehung R lässt die Norm unberührt. Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{d}\vec X Eigenvektor mit Eigenwert λ des positiv definiten rechten Strecktensors U. Dann berechnet sich
Für den linken Strecktensor v bestimmt sich in der Euler’schen Betrachtungsweise:
wieder weil die Rotation die Norm beibehält. Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathrm{d}\vec x Eigenvektor mit Eigenwert λ des ebenfalls positiv definiten linken Strecktensors v. Dann zeigt sich
und weiter
Die Hauptstreckungen in der Lagrange’schen- und Euler’schen Betrachtungsweise sind gleich aber die Richtungen, in denen die Hauptstreckungen auftreten, sind gemäß
gegeneinander verdreht, so wie es die Kreuze im Bild auch nahelegen.