Das huygenssche Prinzip bzw. Huygens-Prinzip, auch huygens-fresnelsches Prinzip genannt (nach Christiaan Huygens und Augustin Jean Fresnel), besagt, dass jeder Punkt einer Wellenfront als Ausgangspunkt einer neuen Welle, der so genannten Elementarwelle, betrachtet werden kann. Die neue Lage der Wellenfront ergibt sich durch Überlagerung (Superposition) sämtlicher Elementarwellen. Da die Elementarwelle eine Kugelform bzw. Kreisform hat, bildet sich auch eine rücklaufende Welle. Aus dem huygensschen Prinzip folgen viele Spezialfälle, wie Beugungserscheinungen im Fernfeld (Fraunhoferbeugung) oder Nahfeldbeugung (Fresnelbeugung).[1]
Das Konzept wurde 1678 von Christiaan Huygens[2] vorgeschlagen, um die Ausbreitung von Licht zu erklären. Demnach ist jeder Punkt, der von einer Wellenfront erreicht wird, Ausgangspunkt für eine kugel- bzw. kreisförmige Elementarwelle, welche sich im selben Ausbreitungsmedium mit gleicher Geschwindigkeit ausbreitet wie die ursprüngliche Welle. Die sich weiter ausbreitende Wellenfront ergibt sich als äußere Einhüllende der Elementarwellen. Huygens nahm an, dass die Elementarwellen nicht rückwärts, sondern nur in Ausbreitungsrichtung wirken, konnte jedoch keine qualitative Erklärung dafür geben.
An der Grenze zweier Medien, in denen die Wellen eine andere Ausbreitungsgeschwindigkeit besitzen, ändert eine Wellenfront, die nicht senkrecht auftrifft, ihre Richtung. Die Theorie von Huygens bot damit eine einfachere Erklärung für die Reflexion und Brechung von Licht, als dies mit der Korpuskeltheorie von Newton möglich war.
Im Jahr 1816 konnte Augustin Fresnel dieses Prinzip erweitern und damit die Beugung von Licht an Hindernissen erklären. Er zeigte, dass sich nach dem Prinzip der Interferenz die resultierende Welle durch Superposition aller Elementarwellen berechnen lässt. Unter anderem sagte Poisson voraus, dass bei Beugung von Licht an einem runden Objekt ein Poisson-Fleck entsteht. Die experimentelle Bestätigung dieses Phänomens war ein Sieg der Wellenoptik gegenüber der damals verbreiteten Korpuskeltheorie. Gustav Kirchhoff zeigte dann, wie sich das huygenssche Prinzip aus den Maxwell-Gleichungen herleiten lässt, und präsentierte die präzisere Lösung in Form der kirchhoffschen Beugungsintegrale.[3]
Als Ausbreitungsmedium der Lichtwellen postulierte Huygens den Äther. Dieser wird seit der allgemeinen Akzeptanz der 1905 publizierten speziellen Relativitätstheorie Albert Einsteins nicht mehr als physikalisches Konzept benötigt. Der scheinbare Widerspruch zwischen dem Teilchen- und Wellencharakter von Licht wird in der Quantenmechanik aufgelöst. In diesem Zusammenhang wird das huygenssche Prinzip in Form des Zeigermodells zur anschaulichen Erklärung der Ausbreitung von Wahrscheinlichkeitswellen benutzt.
In der Mathematik findet das huygenssche Prinzip in der Theorie der partiellen Differentialgleichungen Anwendung. Es besagt, dass Wellengleichungen eine hintere Wellenfront in den Räumen $ \mathbb {R} ^{n} $ für $ n\geq 3 $ besitzen. Man spricht von der Existenz einer hinteren Wellenfront, wenn sich eine Störung der Ausgangsdaten in einer Umgebung eines Punktes nicht auf die Lösung der Wellengleichung für hinreichend große Zeiten t auswirkt.
Erklärung des huygensschen Prinzips an der einfachen Wellengleichung $ \partial _{t}^{2}u-\Delta u=0 $
Als Anfangsdaten (für $ t=0 $) gilt:
mit $ t\in \mathbb {R} $ als Zeitvariable und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x \in \mathbb R^n als Ortsvariable.
Nach der d'Alembertschen Lösungsformel gilt für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): u = u(x,t) :
Stören wir das Anfangsdatum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \phi im Intervall $ [a,b] $, dann erkennt man anhand der obigen Formel, dass für den Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x_0 \in [a,b] die Störung zum Zeitpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t=T > \max (x_0 - a, b - x_0) keinen Einfluss mehr hat, denn die Anfangsdaten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \phi (x-T) und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \phi (x+T) wurden nicht gestört. Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \phi gilt das huygenssches Prinzip.
Sei $ \psi \neq 0 $ und man störe das Anfangsdatum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): [a,b] . Dann wird man feststellen, dass für jeden Zeitpunkt T die Störung noch Auswirkungen auf die Lösungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): u(x,T) hat, denn man integriert über das "Störintervall":
Fazit: Im Eindimensionalen gilt das huygenssches Prinzip im Allgemeinen nicht, sondern es gilt nur für das Anfangsdatum $ \phi $.
Die allgemeine Lösungsformel für den zweidimensionalen Fall (nach der Abstiegsmethode) lautet:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): B(x,t) bezeichnet die (ausgefüllte) Kreisscheibe mit Mittelpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x und Radius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t .
Anhand dieser Formel sieht man sofort, dass das huygenssches Prinzip nicht gilt. Denn stört man die Anfangsdaten $ \phi $ oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi in einem Rechteck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R=[a,b]\times[c,d] dann wirkt sich die Störung auch noch zu jeden Zeitpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t=T für alle Punkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x_0 \in R aus, denn die Kreisscheibe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): B(x,t) beinhaltet für diese Punkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x_0 das Rechteck R. Also wird wieder über gestörten Daten integriert.
Nach der Kirchhoffschen Formel lautet die Lösung für die Wellengleichung:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): S(x,t) bezeichnet die Kugeloberfläche der Kugel mit Zentrum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x und Radius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t . $ d\sigma _{t}(y) $ bezeichnet das Oberflächenelement der Kugel.
Mithilfe dieser Formel erkennt man sofort, dass im 3D-Fall das huygenssche Prinzip gilt. Werden die Anfangsdaten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \phi oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi auf einem Quader Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): Q = [a,b]\times[c,d]\times[e,f] gestört, dann wirkt sich diese Störung nicht auf die Lösung für die Punkte x0∈Q für große Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t\ge T aus. Man muss nur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t so groß wählen, dass die Kugeloberfläche den Quader komplett umschließt und somit nicht mehr über die gestörten Daten Q integriert wird. Offensichtlich muss
gelten.