Das Kondo-Modell – auch s-d-Modell genannt – ist ein mathematisches Modell zur Beschreibung des elektrischen Widerstandes in Metallen mit magnetischen Störstellen – dem sogenannten Kondo-Effekt (das anomale Ansteigen des Widerstandes bei sehr tiefen Temperaturen).
In diesem vereinfachten Modell werden die stromerzeugenden Elektronen als freie Elektronen im Leitungsband (s-Band) modelliert. Die magnetischen Störstellen am Platz i im Kristallgitter werden als lokalisierte Spins angenommen, welche über eine (anti-)magnetische Spin-Spin-Wechselwirkung an die Leitungsbandelektronen gekoppelt sind. Die Modellierung der magnetischen Störstellen als lokalisierte Spins beruht auf der Annahme, dass die Elektronen in den d-Orbitale der magnetischen Störstellen stark lokalisiert sind. Diese s-d-Wechselwirkung wurde zuerst 1951 von Clarence Melvin Zener beschrieben.[1] Kasuya quantifizierte dieses Modell 1956 und stellte den zugehörigen Hamiltonian auf.[2] 1964 behandelte Jun Kondo[3] dieses Modell mittels Störungstheorie 3. Ordnung und berechnete damit den elektrischen Widerstand. Das berechnete Verhalten des elektrischen Widerstandes zeigte qualitativ den experimentell gefundenen Kondo-Effekt.
Das Kondo-Modell kann mit dem folgenden Hamiltonian beschrieben werden:
Hierbei beschreibt
Das Kondo-Modell weist bei anti-ferromagnetischer Kopplung (negatives J) in Störungstheorie 3. Ordnung einen logarithmischen Term im elektrischen Widerstand auf.
Hierbei ist