Ladungskonjugation

Ladungskonjugation

Die Ladungskonjugation oder C-Parität (für englisch Charge = Ladung) ersetzt in quantenmechanischen Zuständen jedes Teilchen durch sein Antiteilchen. Sie spiegelt so das Vorzeichen der Ladung und lässt Masse, Impuls, Energie und Spin jedes Teilchens unverändert.

Die elektromagnetische und die starke Wechselwirkung sind invariant unter Ladungskonjugation (kurz C-invariant), d. h., bei Streuung oder Zerfall verhalten sich die ladungsgespiegelten Zustände wie die ursprünglichen Zustände.
Dagegen ist die Schwache Wechselwirkung nicht C-invariant (Paritätsverletzung): Der Anteil des Elektrons, der bei schwachen Wechselwirkungen in ein Elektron-Neutrino und ein $ W^{-} $-Boson übergehen kann, wird bei Ladungskonjugation durch den Teil des Positrons ersetzt, der nicht an die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): W -Bosonen koppelt.

Ladungskonjugation des Dirac-Feldes

Das Dirac-Feld Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi wird bei Ladungskonjugation auf das Feld Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi_c transformiert, das mit umgekehrter Ladung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): e an die elektromagnetischen Potentiale Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A_0,A_1,A_2,A_3 koppelt. Wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi die Dirac-Gleichung (über den doppelten Index Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n ist zu summieren)

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \bigl( \gamma^n\,(\mathrm i\,\partial_n -e A_n) - m\bigr)\psi=0

erfüllt, dann soll das ladungskonjugierte Feld Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi_c der Gleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \bigl( \gamma^n\,(\mathrm i\,\partial_n +e A_n) - m\bigr)\psi_c=0

genügen.

Komplex Konjugieren der ersten Gleichung ergibt

$ {\bigl (}\gamma ^{n\,*}\,(-\mathrm {i} \,\partial _{n}-eA_{n})-m{\bigr )}\psi ^{*}=0\ . $

Es erfüllt also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi_c = B \psi^* die ladungskonjugierte Gleichung, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): B eine Matrix ist, für die gilt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): -\gamma^{n\,*}=B^{-1} \gamma^n B

Solch eine Matrix gibt es für jede Darstellung der Dirac-Matrizen, denn alle irreduziblen Darstellungen der Dirac-Algebra sind einander äquivalent, und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): -\gamma^{n\,*} stellt die Dirac-Algebra ebenso dar wie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \gamma^{n}\,.

Schreibt man $ \psi ^{*}=\gamma ^{0\,{\text{T}}}\,{\overline {\psi }}^{\text{T}} $, so hat das ladungskonjugierte Feld die Form

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi_c = C \,\overline{\psi}^{\text{T}} mit der Ladungskonjugationsmatrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): C=B\,\gamma^{0\,\text{T}}\,.

Wegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \gamma^{n\,\dagger}=\gamma^0 \gamma^n \gamma^0 erfüllt die Ladungskonjugationsmatrix

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): -\gamma^{n\,\text{T}}=C^{-1} \gamma^n C\,.

In der Dirac-Darstellung der Gamma-Matrizen kann die Ladungskonjugationsmatrix als

$ C=\mathrm {i} \,\gamma ^{2}\,\gamma ^{0}={\begin{pmatrix}&-\mathrm {i} \sigma ^{2}\\-\mathrm {i} \sigma ^{2}\end{pmatrix}} $

so gewählt werden, dass sie reell, antisymmetrisch und unitär ist, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): -C = C^ {-1}=C^ {\text{T}}=C^\dagger\,.

Eigenwerte und Eigenzustände

Für einen Eigenzustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |\psi\rangle des C-Operators gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal C \, |\psi\rangle = \eta_C \, | \psi \rangle ,

wobei der Eigenwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \eta_C die sogenannte C-Parität des entsprechenden Eigenzustandes (im weiteren Sinne also Teilchens) bezeichnet. Da der C-Operator eine Involution (Mathematik) ist und demnach (ähnlich zum Paritätsoperator) den Eigenzustand bei zweifacher Wirkung invariant lässt, gilt ferner

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal {C}^2|\psi\rangle = \eta_C \mathcal{C} |\psi \rangle = \eta_{C}^{2} |\psi\rangle \,\overset{!}{=} \, | \psi \rangle ,

sodass nur die Eigenwerte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \eta_C = \pm 1 erlaubt sind. Insbesondere können nur neutrale Systeme (elektrische Ladung, Strangeness, Baryonenzahl, … = 0) Eigenzustände des C-Paritätsoperators sein, d. h. das Photon sowie gebundene Teilchen-Antiteilchen-Zustände wie das neutrale Pion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \pi^0 oder das Positronium.

Literatur

  • Claude Itzykson, Jean-Bernard Zuber: Quantum Field Theory. McGraw-Hill, New York 1980, ISBN 0-07-032071-3.

Siehe auch