Unter Multiplizität oder Entartungsgrad versteht man in der Quantenmechanik die Anzahl der orthogonalen Zustände, die zu einer bestimmten Observablen einen bestimmten Eigenwert gemeinsam haben. Diese Zustände sind also entartete Eigenzustände zu dieser Observablen.
Ein Beispiel ist die Spinmultiplizität, die sich auf die Observable Gesamtspin einer Atomhülle bezieht. Im einfachsten Beispiel, dem Wasserstoffatom, kann das Elektron im Grundzustand einen von zwei orthogonalen Spinzuständen einnehmen. Ohne äußeres Magnetfeld haben die beiden Zustände denselben Eigenwert für die Energie und können also energetisch nicht unterschieden werden, d. h., sie bilden ein zweifach entartetes Energieniveau; die Multiplizität ist hier 2, das Niveau ist ein Dublett. In einem Magnetfeld spaltet das Niveau durch den Zeeman-Effekt in zwei Niveaus auf.
Ganz entsprechend heißt bei zwei Elektronen der Zustand mit Gesamtspin
Allgemein hat ein System mit Gesamtspin
Ein Energieniveau mit Spinmultiplizität
Spinquantenzahl |
magn. QZ des Spins |
Multiplizität |
Bezeichnung | Typ |
---|---|---|---|---|
0 | 0 | 1 | Singulett | Skalarboson |
1/2 | −1/2, +1/2 | 2 | Dublett | Fermion |
1 | −1, 0, +1 | 3 | Triplett | Vektorboson |
3/2 | −3/2, −1/2, +1/2, +3/2 | 4 | Quartett | Fermion |
2 | −2, −1, 0, +1, +2 | 5 | Quintett | Tensorboson |
Bei Systemen aus mehreren Elektronen und/oder Atomkernen wird zwischen der Spin-Multiplizität der Elektronen und der Spin-Multiplizität der Atomkerne unterschieden.
Der Eigendrehimpuls eines Elektrons hat als Quantenzahl eines Elementarteilchens mit dem Spin
Bei Atomen (bzw. Ionen) mit mehreren Elektronen und bei Molekülen muss zunächst die Gesamtspin-Quantenzahl
wobei
Als einfaches Beispiel kann das Heliumatom als 2-Elektronensystem dienen, dafür sind die Zustände
System | Beispiel | Elektronen im Grundzustand | Gesamtspin-Quantenzahl |
Multiplizität |
Grundzustand | |
---|---|---|---|---|---|---|
gepaart | ungepaart | |||||
die meisten Moleküle | Wasserstoff-Molekül H-H | alle (hier 1x2) |
0 | 0/2 = 0 | 2x0+1 = 1 | Singulett |
Radikale | Stickstoffmonoxid •N=O bzw. N-O• | hier 5x2 | 1 | 1/2 | 2x(1/2)+1 = 2 | Dublett |
Biradikale | Sauerstoff-Molekül •O-O• | hier 5x2 | 2 | 2/2 = 1 | 2x1+1 = 3 | Triplett |
Metallionen, vor allem der Nebengruppe, und Komplexe |
…x2 | Triplett, Quartett, … |
Der Zahlenwert der Multiplizität wird in den Termsymbolen links hochgestellt angegeben, die häufig zur Kennzeichnung der Quantenzustände von Atomen und Molekülen verwendet werden.
Die Spinmultiplizität spielt eine wichtige Rolle für die Auswahlregeln in der Spektroskopie bei Mehrelektronensystemen. So erfolgen elektrische Übergänge besonders gut, wenn die Kopplung der Spins und damit die Multiplizität erhalten bleibt (erlaubter Übergang, z. B. Fluoreszenz aus dem ersten angeregten Singulett-Zustand in den Singulett-Grundzustand).
Dagegen gelten Prozesse, bei denen sich die Multiplizität ändert (Interkombination), nach dem in der Spektroskopie üblichen Sprachgebrauch als verboten (Interkombinationsverbot). Genauer ist damit ausgedrückt, dass sie meist nur in geringem Ausmaß bzw. „langsam“ (d. h. statistisch selten) stattfinden, wie z. B. in der Phosphoreszenz (Übergang aus dem tiefsten angeregten Triplett-Zustand in den Singulett-Grundzustand).
Der Spin der Nukleonen und ihr Bahndrehimpuls ergeben den Gesamtspin