Newtonsche Abbildungsgleichung

Newtonsche Abbildungsgleichung

Datei:Newton-Linsengleichung.SVG
Bildentstehung an einer Linse. Die Größen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): z' sind rot markiert.

Die newtonsche Abbildungsgleichung ist eine nach dem englischen Physiker Isaac Newton benannte Formel der Strahlenoptik.

Sie lautet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f^2 = z \cdot z' und wird vielfach anstelle der Linsengleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{1}{f} = \frac{1}{g} + \frac{1}{b} verwendet. Hierbei steht z bzw. z’ für die Differenz aus Gegenstandsweite bzw. Bildweite und Brennweite.

Herleitung mit dem Strahlensatz

Betrachtet man den untersten vom Gegenstand G ausgehenden Strahl in der Abbildung, und den obersten zum Bild einfallenden Strahl (also die Strahlen durch die beiden Brennpunkte), so folgt aus dem Strahlensatz

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{G}{B} = \frac{z}{f} = \frac{f}{z'}

Hierbei sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): B die Höhe des Gegenstandes bzw. Bildes. Die newtonsche Abbildungsgleichung ergibt sich unmittelbar aus dem rechten Gleichheitszeichen durch Erweitern mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f z' .

Herleitung aus der Linsengleichung

Die newtonsche Abbildungsgleichung ist äquivalent zur Linsengleichung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{1}{f} = \frac{1}{g} + \frac{1}{b}

Es ergibt sich nach einfachen arithmetischen Umformungen:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} f &= \frac{g \cdot b}{g+b}\\ f (g + b) &= g \cdot b\\ f \cdot g + f \cdot b &= g \cdot b \end{align}

Nach Addition von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f^2 - f\cdot g - f \cdot b auf beiden Seiten erhält man

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} f^2 &= g \cdot b - g \cdot f - b \cdot f + f^2 \\ &= (g - f)(b - f) \end{align}

was wegen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ z = g - f und $ \ z'=b-f $

zum gewünschten Resultat führt.

Quellen