Pfadordnung ist eine in der theoretischen Physik gebräuchliche mathematische Operation, gekennzeichnet durch den Pfadordnungsoperator
In nichtrelativistischen Theorien ist insbesondere Zeitordnung, d. h. Pfadordnung nach dem Parameter Zeit, von Bedeutung. Diese wird durch den Zeitordnungsoperator
Der Pfadordnungsoperator (und damit auch der Zeitordnungsoperator) ist kein linearer Operator und wird deshalb manchmal auch als „Meta-Operator“ oder „Symbol“ bezeichnet.
Für ein Produkt von linearen Operatoren
sodass die Operatoren nach dem Wert der Parameter geordnet auftreten:
Tritt ein Parameterwert mehrfach auf, so ist die Pfadordnung nicht definiert. Da bei pfadgeordneten Produkten aber in der Regel über den Parameter integriert wird, verschwindet das Maß solcher Punkte. Das Vorzeichen ist für Bosonen immer +1, für Fermionen gleich dem Vorzeichen der Permutation (+1 falls die Anzahl an Vertauschungen gerade ist, ansonsten −1).
In der theoretischen Festkörperphysik ist die kausale Greensche Funktion
Häufig tritt Zeitordnung innerhalb einer Reihenentwicklung auf. Hier hat sich die zeitgeordnete Exponentialfunktion eingebürgert:
Dies lässt sich auf beliebige Funktionen des Operators verallgemeinern.