Physikalische Größe | |||||||
---|---|---|---|---|---|---|---|
Name | Strahldichte | ||||||
Formelzeichen | |||||||
|
Die Strahldichte[1] oder Strahlungsdichte L (englisch radiance[1]) liefert detaillierte Information über die Orts- und Richtungsabhängigkeit der von einer Sendefläche abgegebenen Strahlung.
Die Strahldichte
Anders ausgedrückt[1] ist die Strahldichte
wobei die Strahlstärke wiederum die Strahlungsleistung
Die Si-Einheit der Strahldichte ist W / (m2·sr).
Für die Definition der Strahldichte ist es unerheblich, ob es sich bei der vom Flächenelement abgegebenen Strahlung um (thermische oder nichtthermische) Eigenemission, um transmittierte oder reflektierte Strahlung oder eine Kombination daraus handelt. Die Strahldichte ist an jedem Punkt des Raumes definiert, an dem Strahlung vorhanden ist.[2] Man denke sich anstelle eines abstrahlenden Oberflächenelements gegebenenfalls ein fiktives durchstrahltes Flächenelement im Raum.
Die in eine bestimmte Richtung abgegebene Strahlungsleistung hängt von den physikalischen Strahlungseigenschaften der Oberfläche ab. Hinzu kommt der Einfluss der Geometrie: Ein schräg stehendes abstrahlende Flächenelement erscheint um den Faktor
deren Leistung also gemäß
Die entsprechende Größe der Photometrie ist die Leuchtdichte
Die spektrale Strahldichte (engl. spectral radiance)[3]
Die spektrale Strahldichte wird auch angegeben als
Die spektrale Strahldichte liefert die detaillierteste Darstellung der Strahlungseigenschaften eines Strahlers. Sie beschreibt explizit die Richtungsabhängigkeit und die Frequenz- (oder Wellenlängen‑)abhängigkeit der abgegebenen Strahlung. Aus der spektralen Strahldichte lassen sich die anderen Strahlungsgrößen durch Integration über die Richtungen und/oder Frequenzen ableiten. Integration über das relevante Frequenz- bzw. Wellenlängenintervall liefert insbesondere wieder die Strahldichte, welche daher, wenn sie von der spektralen Strahldichte unterschieden werden muss, auch Gesamtstrahldichte genannt wird.
Das radiometrische und photometrische Grundgesetz besagt, dass die Leuchtdichte auf dem Weg von der Lichtquelle zur beleuchteten Fläche unverändert bleibt. In der Radiometrie gilt dies analog:
Für eine detaillierte Beschreibung siehe Leuchtdichte#Photometrisches Grundgesetz.
Die Ausstrahlung einer Abstrahlfläche
Dabei wurde die Darstellung des Raumwinkelelements in Kugelkoordinaten verwendet:
Da
Eine wesentliche Vereinfachung tritt ein, wenn die Strahlfläche ein lambertscher Strahler ist, wenn also die Strahldichte orts- und richtungsunabhängig ist. Dann ist die Strahldichte eine konstante Zahl
Das Integral hängt jetzt nur noch von der Gestalt und Lage des Raumwinkels
Wird beispielsweise die Ausstrahlung in den gesamten von der Strahlfläche überblickten Halbraum betrachtet, so ergibt sich für das Integral der Wert
Ist die Strahlfläche ein Schwarzer Strahler, so lässt sich die Strahldichte nach dem planckschen Strahlungsgesetz berechnen; ist sie ein Grauer Strahler, so ist die plancksche Strahldichte um den Emissionsgrad abzumindern.
Formeln: siehe Plancksches Strahlungsgesetz
Vorlage:Radiometrische und photometrische Größen