Unter Strahlungstransport (auch Strahlungstransfer) versteht man die Beschreibung der Ausbreitung von Strahlung (i.A. Licht als Beispiel Elektromagnetische Strahlung) durch ein Medium. Strahlungstransport spielt vor allem in Bereichen der Astrophysik eine wesentliche Rolle. So basiert die Theorie der Sternatmosphären, die Bildung der Sternspektren oder die Bildung interstellarer Linienspektren auf Strahlungstransport. Weiterhin wird Strahlungstransport auch zum Verständnis von Spektroskopie in vielen weiteren physikalischen (z. B. für Analysen in der Plasmaphysik) und technischen (z. B. bei verschiedenen nichtthermischen Lichtquellen) Bereichen benötigt. Eine große Rolle spielt der Strahlungstransport auch für den Treibhauseffekt der Erdatmosphäre.
Wenn sich elektromagnetische Strahlung in einem Medium ausbreitet (ganz gleich ob in der Photonen-Betrachtung oder Feldbetrachtung), wird sie von dem Medium (insbesondere von dessen Atomen und Ionen) absorbiert, gestreut oder kann das Medium verlassen. Diese Prozesse bzw. die Beschreibung dieser Prozesse nennt man Strahlungstransport. Bei diesem Prozess wird die Strahlung verschiedener Wellenlänge je nach den Eigenschaften des Mediums (insbesondere dessen Atomen und Ionen) verschieden beeinflusst. Ziel einer Strahlungstransportrechnung ist es, das austretende Licht (entweder als ganzes Spektrum oder einzelne Spektrallinien) bzw. das Strahlungsfeld im Inneren des Mediums zu berechnen; entweder um ein Spektrum vorherzusagen, oder um Rückschlüsse auf die Zusammensetzung des Mediums zu gewinnen.
Strahlungstransport-Rechnungen im eigentlichen Sinne berücksichtigen die Wirkung der Strahlung auf das Medium nur eingeschränkt. So wird z. B. die Energiedeposition im Medium (das heißt dessen Erwärmung) durch Absorption im Strahlungstransport explizit genau so wenig behandelt wie die Kühlung bei vorherrschender Emission aus dem Medium. Nutzt man nicht andere physikalische Gesetze, um diese Effekte mit einzubeschließen, geht man davon aus, dass andere Prozesse (z. B. Konvektion oder Wärmeleitung) die Temperaturstruktur im Medium trotzdem konstant halten. Eine physikalisch vollständigere Simulation beinhaltet daher neben Energieerhaltung und anderen physikalischen Gesetzen den Strahlungstransport als einen Teil des umfassenderen Modells.
Das Fundament des Strahlungstransports bildet die Strahlungstransportgleichung. Sie verknüpft die Strahlungsdichte L mit dem Absorptionskoeffizienten $ \kappa $, dem Streukoeffizienten $ \sigma $ und der Emissionsleistung j des zu passierenden Materials. Dabei hängen die Absorptions- und Streukoeffizienten, sowie die Emissionsleistung u. a. von der Dichte und der Temperatur des Materials ab. In der Astrophysik, wie in den folgenden Gleichungen, wird jedoch die Strahlungsdichte L normalerweise als spezifische Intensität I bezeichnet.
In einer einfachen eindimensionalen, zeitunabhängigen Form lautet sie :
In einer sehr allgemeinen Form lautet sie entlang der Richtung $ {\vec {n}} $
Da die Emissionsleistung des Materials teilweise von Streuung hervorgerufen wird, und da die Streuung ihrerseits ein Integral über die zu berechnende spezifische Intensität ist, ist die Strahlungstransportgleichung eine Integro-Differentialgleichung.
Üblich ist es, die Strahlungstransportgleichung entweder zu postulieren oder aus einem Boltzmann-Transport-Formalismus für Photonen herzuleiten[1]. Letztendlich muss aber dann postuliert werden, dass Photonen Transport durch die Boltzmann-Gleichung beschrieben werden kann. Alternativ kann man die zeitunabhängige Strahlungstransportgleichung aus den Maxwell-Gleichungen herleiten, wenn man die mikrophysikalischen Eigenschaften von beliebig geformten und beliebig orientierten, sowie unabhängig streuenden Teilchen ausnutzt [2].
Analytisch lässt sich zwar eine sog. formale Lösung der Strahlungstransportgleichung angeben. Diese ist aber nur für Spezialfälle in eine echte, brauchbare Lösung ausformulierbar.
Die numerische Lösung der Strahlungstransportgleichung ist i.A. sehr aufwendig. Das modernste und stabilste Verfahren ist die sog. „Accelerated Lambda Iteration“. Mathematisch entspricht dies einem Gauß-Seidel-Verfahren. Für dreidimensionale Systeme und einfache Absorptionseigenschaften lässt sich das Strahlungstransportproblem auch mit Monte-Carlo-Simulationen lösen. Ein speziell in den Ingenieurwissenschaften bewährtes Verfahren für dreidimensionale Systeme mit beliebigen Eigenschaften ist die ursprünglich zur Lösung der Boltzmann-Gleichung entwickelte Diskrete Ordinaten-Methode[3].