Wannier-Darstellung

Wannier-Darstellung

Datei:WanF-BaTiO3.png
Dreidimensionales Modell der Wannier-Funktion von BaTiO3

Die nach dem Schweizer Physiker Gregory Hugh Wannier benannte Wannier-Darstellung ist ein Begriff aus der Festkörperphysik. In der Tight-Binding-Näherung ist eine Beschreibung der elektronischen Wellenfunktionen in der gitterperiodischen Bloch-Basis nicht mehr sinnvoll. Eher konstruiert man die Zustandsfunktion aus atomaren Wellenfunktionen. Diese sind nicht orthonormiert. Aus den Bloch-Funktionen lässt sich jedoch eine Orthonormalbasis lokalisierter Zustände konstruieren:

$ \omega _{mn}({\vec {r}}-{\vec {R}}_{m})={\frac {1}{\sqrt {N}}}\sum _{k}e^{-i{\vec {k}}{\vec {R}}_{m}}\cdot \psi _{n{\vec {k}}}({\vec {r}}) $

Dabei ist

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi_{n \vec k} (\vec r ) eine Bloch-Funktion
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \omega_{i n} (\vec r - \vec R_m) der zugehörige Wannier-Zustand
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): e die Eulersche Zahl
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): i die imaginäre Einheit
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \vec k der Wellenvektor
  • $ {\vec {r}} $ der Ortsvektor
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n der Bandindex.

Die umgekehrte Konstruktion der Bloch-Zustände aus den Wannier-Zuständen heißt dann

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \psi_{n \vec k} (\vec r) = \frac{1}{\sqrt{N}}\sum_{\vec R_m} e^{i \vec k \vec R_m} \cdot \omega_{i n}(\vec r - \vec R_m)

Je größer die Gitterkonstante ist, desto stärker sind die Wannierzustände lokalisiert. Sie nähern sich immer mehr an die atomaren Zustände an. Statt aber den Wannier-Zustand einfach einem atomaren Zustand gleichzusetzen, nähert man ihn durch eine Linearkombination von atomaren Zuständen (LCAO):

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \omega_{i n}(\vec r -\vec R_m) = \sum_{n\in U} a_n \cdot \varphi_n (\vec r - \vec R_m)

Die Menge U stellt dabei einen Unterraum der atomaren Zustände Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varphi_n(\vec r - \vec R_m) dar.

Literatur

  • Neil W. Ashcroft, N. David Mermin: Festkörperphysik. 2. Auflage. Oldenbourg, München 2005, ISBN 3-486-57720-4.
  • Konrad Kopitzki: Einführung in die Festkörperphysik. 6. Auflage. Teubner, Wiesbaden 2007, ISBN 3-8351-0144-7.
  • Gerd Czycholl: Theoretische Festkörperphysik. 3. Auflage. Springer, Berlin 2008, ISBN 978-3-540-74789-5.