Weltraumlift

Weltraumlift

Schematische Übersicht über einen möglichen Weltraumlift
Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst entfernt. Bitte hilf der Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst.

Ein Weltraumlift, auch Weltraumaufzug bzw. engl. Space Elevator genannt, ist eine theoretisch mögliche, jedoch mit heute verfügbarer Technik nicht realisierbare Aufzugsanlage von einer Planetenoberfläche in den Weltraum. Eine Gondel könnte beispielsweise vom Erdboden bis zu einer geostationären Raumstation fahren. Umlaufbahnen in niedrigeren Bahnen sind theoretisch nur sehr schwer möglich, da mit niedrigeren Umlaufbahnen ohne weitere Aufwände keine geostationäre Vorrichtung erbaut werden kann.

Als Teil elementarer Infrastruktur kann die Errichtung eines Weltraumlifts ein wichtiger Schritt zur Weltraumbesiedlung durch den Menschen sein.

Geschichte

Die Idee des Weltraumlifts tauchte erstmals 1895 auf, als der russische Weltraumpionier Konstantin Ziolkowski inspiriert durch den Eiffelturm vorschlug, einen Weltraumturm zu errichten – also einen Turm, der direkt in den Weltraum reicht. Er stellte sich vor, am Ende eines Seils eine Art Aufhängung des Aufzugs direkt in den geostationären Orbit zu bringen.

Ein Turm oder Aufzug dieser Art wäre in der Lage, ohne Raketentechnik Objekte in den Orbit zu befördern. Da ein Objekt beim Aufstieg gleichzeitig an tangentialer Geschwindigkeit gewinnen muss, hätte es beim Erreichen des Ziels gleichzeitig die nötige Energie und Geschwindigkeit, um im geostationären Orbit zu verbleiben.

Ein Gebäude dieser Art zu errichten war unmöglich, da kein Material mit der nötigen Druckfestigkeit bekannt war. 1957 schlug dann der sowjetische Wissenschaftler Juri Arzutanow eine alternative Variante dieser Idee vor. Ein Satellit solle in eine geostationäre Umlaufbahn gebracht werden und als Aufhängung des Aufzugs dienen. Von dort könnte man dann ein Seil zur Erdoberfläche herunterlassen. Der Schwerpunkt der Konstruktion müsste oberhalb des geostationären Orbit liegen, so dass bei einer Winkelgeschwindigkeit, die der Erdrotation entspricht, die Fliehkraft die Erdanziehungskraft ausgleicht. Ein Seil von 35.786 km Länge ist jedoch schwierig zu realisieren.

1966 untersuchten vier amerikanische Ingenieure, welches Material für die Schaffung eines solchen Seils erforderlich wäre. Sie kamen zu dem Schluss, dass neue Materialien benötigt würden, die mindestens doppelt so zugstark sein müssten wie alle damals bekannten Materialien. 1975 schlug der US-Amerikaner Jerome Pearson vor, eine kegelförmige Konstruktion zu benutzen. Das Seil müsste auf der Höhe des geostationären Orbits am dicksten sein, da es dort die größte Spannung auszuhalten hat. Der Bau des Lifts würde am Schwerpunkt beginnen. Von dort aus würde in beide Richtungen gearbeitet. Das Seil könnte als Gegengewicht in den Weltraum hinaus verlängert werden, während man auf der erdnahen Hälfte einen Turm errichten würde.

Aktuell

Künstlerische Darstellung eines Weltraumliftes

In jüngster Zeit werden verstärkt Anstrengungen unternommen, diesen Plan eines Tages in die Wirklichkeit umzusetzen. David Smitherman von der US-Weltraumbehörde NASA veröffentlichte so zum Beispiel im Jahr 2000 einen Bericht, der auf den Ergebnissen einer 1999 im Marshall Space Flight Center abgehaltenen Konferenz beruht.[1]

Seit Anfang des 21. Jahrhunderts ist mit den Kohlenstoffnanoröhren ein Material bekannt, das die Anforderungen erfüllen könnte. Anfang 2004 ist es einer Gruppe von Wissenschaftlern um Alan Windle an der Universität Cambridge gelungen, auf der Grundlage dieser Technologie einen etwa 100 Meter langen Faden herzustellen. Kohlenstoffnanoröhren haben ein bis zu 100 mal besseres Verhältnis von Zugfestigkeit zu Gewicht als Stahl, deshalb ist dieser Werkstoff ein möglicher Kandidat für den Weltraumlift. Jedoch ist die Technologie noch längst nicht ausgereift: Kohlenstoffnanoröhren können bisher nur in sehr begrenzter Zahl hergestellt werden und sind dementsprechend sehr teuer. Seile aus Nanoröhren müssen dazu im atmosphärischen Bereich des Seils noch beschichtet werden, weil Kohlenstoff oxidiert.

Ende Juni 2004 teilte der Leiter des Weltraumfahrstuhlprojekts Bradley Edwards in Fairmont, West Virginia mit, dass schon in 15 Jahren ein Prototyp fertig sein könnte. Die NASA unterstützt das Forschungsprojekt durch ihr NASA Institute for Advanced Concepts (NIAC) mit 500.000 US-Dollar.

Das US-amerikanische Unternehmen LiftPort Group hat es sich zum Ziel gesetzt, einen solchen Weltraumaufzug zu bauen. Dazu wurde – nach ersten Versuchen auf der Erdoberfläche – im Sommer 2012 das erste Teilziel neugesetzt, zwischen Mondoberfläche und einer dort in 55.000 km Höhe (künftig) stehenden Raumstation einen Aufzug zu bauen. Für diesen Zweck soll ein 250.000 km langes Seil in der Mondoberfläche verankert und bis zu einem in der Umlaufbahn befindlichen Lagrange-Punkte geführt werden. Zudem hatte das japanische Bauunternehmen Obayashi im Frühjahr 2012 für 2050 angekündigt, ebenfalls einen Aufzug von der Erde in den Weltraum, mit einer Station in 36.000 km Höhe, zu bauen.[2]

Die Spaceward Foundation veranstaltete zusammen mit der NASA die Elevator:2010-Wettkämpfe.

Auswirkungen

Energiebilanz beim Weltraumlift

Es wird vermutet, dass ein Weltraumlift die Transportkosten von derzeit 12.000[3] bis 80.000 US-Dollar pro Kilogramm auf ungefähr 200 US-Dollar pro Kilogramm reduzieren könnte.[4] Die wissenschaftliche Forschung würde davon durch den sehr viel billigeren Transport von Laboren und Teleskopen in den Weltraum stark profitieren. Auch die industrielle Forschung kann durch Arbeiten in der Schwerelosigkeit neue Verfahren entwickeln und neue Fertigungstechnologien ermöglichen; nicht zuletzt wäre es möglich, diese Technik für den Weltraumtourismus zu erschließen.

Abkoppeln vom Weltraumlift

Die Energiebilanz beim Transport mit dem Weltraumlift ist – auch ohne Rekuperation beim Zurückkehren zur Erde – nicht zwingend negativ. Um ein Kilogramm Masse vom Erdäquator bis in eine Höhe von 35.786 km über dem Erdäquator hochzuheben, benötigt man 48.422 kJ (ca. 13 kWh). Wird das Seil bis in eine Höhe von 143.780 km über dem Erdäquator verlängert, dann kann diese Energiemenge wieder zurückgewonnen werden. Das liegt daran, dass die Summe aus Gravitationspotentialdifferenz und Zentrifugalkraftpotentialdifferenz zwischen dem Erdäquator und 143.780 km Höhe gleich null ist. Diese Rückgewinnung ist aber nur beim Transport eines Körpers von der geostationären Umlaufbahn in eine noch größere Höhe möglich, beispielsweise um eine interplanetare Sonde mittels (eines Teils) der Fliehkraft zu starten.

Technik

An den Lift, das Seil und die Basisstation werden enorme technische Ansprüche gestellt. Die NASA hat Wettbewerbe mit hohen Preisgeldern zu diesem Thema ausgeschrieben. Man unterscheidet zwischen den folgenden fünf Problembereichen, zu denen es mehrere Lösungsansätze gibt.

Material für das Seil

Seildurchmesser beim Weltraumlift

Jedes Segment des Seils muss mindestens das Gewicht der darunterliegenden Seilsegmente zuzüglich der Nutzlastkapazität halten können. Je höher das betrachtete Seilsegment liegt, desto mehr Seilsegmente muss es halten. Ein optimiertes Seil besitzt also mit zunehmender Höhe einen größeren Querschnitt, bis sich dieser Trend auf geostationärem Orbit umkehrt, da ab dort die resultierende Kraft der Seilsegmente erdabgewandt wirkt.

Bei einer gegebenen spezifischen Zugfestigkeit eines Materials wird also der minimale Querschnitt an der Basisstation allein durch die Nutzlastkapazität festgelegt. Weiter ist dann auch die optimale weitere Querschnittsentwicklung festgelegt. Das Verhältnis vom größten Seilquerschnitt zum kleinsten wird taper ratio genannt. Sie und die Nutzlastkapazität legen letztlich die Gesamtmasse des Seils fest.

Grundsätzlich lässt sich bei optimiertem Seildurchschnitt mit jedem Material ein Weltraumlift errichten, indem der Querschnittszuwachs entsprechend rapide gewählt wird bzw. eine große taper ratio verwendet wird. Die Ökonomie diktiert hierbei schlussendlich das Limit der noch sinnvollen Werte in dieser Größe.

Ein gewöhnliches Stahlseil konstanten Querschnittes würde bereits ab einer Länge von vier bis fünf Kilometern unter seinem eigenen Gewicht reißen (materialspezifische Reißlänge), Hochleistungsstahlseile für Seilbahnen, deren Reißfestigkeit mit Kevlar vergleichbar ist, kämen auf rund 30 km. Neue Werkstoffe, deren Reißfestigkeit weit jenseits der von Kevlar liegt, sind deswegen ein entscheidender Faktor für eine zukünftige Realisierung dieses Unternehmens. Nach den bisherigen Forschungen kommen drei Möglichkeiten in Frage:

  • Kohlenstoffnanoröhren scheinen die Reißlänge von Kevlar noch einmal um einen Faktor fünf zu übertreffen, Berechnungen von Nicola Pugno des Polytechnikums in Turin ergaben jedoch, dass bei der Verwebung von Kohlenstoffnanoröhren zu längeren Seilen die Reißfestigkeit des Seils um ca. 70 % gegenüber der Reißfestigkeit einzelner Nanoröhren abnimmt. Grund dafür sind unvermeidliche Kristallbaufehler, die gemäß Pugnos Modell die Belastbarkeit des Seils auf ca. 30 Gigapascal reduziert. Berechnungen der NASA zufolge wäre jedoch ein Material mit einer Belastbarkeit von etwa 62 Gigapascal notwendig, um den auftretenden Kräften zu widerstehen. Außerdem ist es bisher keinem Labor gelungen, ein zusammenhängendes Seil zu erschaffen, das länger als 100 Meter ist. Einen zusätzlichen Kosten- und Gewichtsfaktor stellt die Beschichtung des Seils dar, denn Kohlenstoffnanoröhren oxidieren und erodieren in der Atmosphäre.
  • Vielversprechend ist auch die UHMW-Polyethylen-Faser Dyneema, die bei vertikaler Aufhängung eine Reißlänge von 400 km erreicht und somit alle konventionellen Werkstoffe um ein Vielfaches und sogar Spinnenseide um den Faktor zwei übertrifft. Gegen die Verwendung von Dyneema spricht allerdings, dass der Schmelzpunkt von Dyneema zwischen 144 °C und 152 °C liegt, dass die Festigkeit von Dyneema zwischen 80 °C und 100 °C deutlich nachlässt, und dass Dyneema unter −150 °C brüchig wird, denn alle diese Temperaturen treten im Weltraum häufig auf.
Graphen-Lift, konstanter Querschnitt
Graphen-Lift, konstante Belastung
  • Ein neues, noch wenig erforschtes Material ist Graphen. Der Elastizitätsmodul entspricht mit ca. 1020 GPa dem von normalem Graphit entlang der Basalebenen und ist fast so groß wie der des Diamants. Wissenschaftler der New Yorker Columbia University veröffentlichten 2008 weitergehende Messergebnisse, in denen sie hervorhoben, dass Graphen die höchste Reißfestigkeit aufweise, die je ermittelt wurde. Seine Zugfestigkeit von 1.25×105 N/mm2 oder 125 Gigapascal ist die höchste, die je ermittelt wurde, und rund 125 mal so hoch wie die von Stahl.[5] Stahl hat mit 7874 kg/m3 eine rund 3,5 mal höhere Dichte als Graphen mit 2260 kg/m3, so dass die Reißlänge von Graphen rund 436 mal so groß ist wie die von Stahl. In einem als homogen angenommenen Gravitationsfeld von 9,81 m/s2 hätte Graphen eine Reißlänge von rund 5655 km. Tatsächlich wird aber die Schwerebeschleunigung mit zunehmender Höhe deutlich geringer, was die Reißlänge erhöht. Ein Band aus Graphen mit konstanter Querschnittsfläche (taper ratio 1) würde in der Höhe der geostationären Umlaufbahn von 35.786 km über dem Erdäquator erst zu 87 % seiner Reißfestigkeit belastet werden (siehe das Bild). In noch größerer Höhe würde die Zugbelastung dann wieder absinken. Wenn das Graphen-Seil bei konstanter Querschnittsfläche 143.780 km lang wäre, dann würde es in völligem Gleichgewicht mit der Gravitationsbeschleunigung der Erde und der Zentrifugalbeschleunigung durch die Rotation der Erde sein. In der Höhe von 143.780 km über dem Erdäquator würde eine Nettobeschleunigung von 0,78 m/s2 nach oben wirken, und eine Tangentialgeschwindigkeit von 10.950 m/s vorhanden sein, was den Start von Raumsonden begünstigen würde. Graphen und Graphit haben einen Schmelzpunkt von rund 3700 °C. 76 cm breite, endlose Bänder aus Graphen stellt man dadurch her, dass man eine monoatomare Schicht aus Kohlenstoff auf eine Folie aus inertem Trägermaterial, wie zum Beispiel Kupfer, durch chemische Gasphasenabscheidung (CVD) aufbringt, und dann das Trägermaterial auflöst.[6] Auch für Graphen ist vermutlich eine Schutzbeschichtung notwendig.

Errichtung des Seils

Bisher ist nur denkbar, das Seil von einem geostationären Satelliten herunterzulassen. Das Verhalten von langen Seilen im Weltall ist Gegenstand aktueller Forschung. Es ist denkbar, dass initial nur ein minimal tragfähiges Seil gestartet wird, das danach sukzessive verstärkt wird, bis die finale Nutzlastdicke erreicht ist.

Errichtung des Turms als Basisstation

Auch die Basisstation muss starke Belastungen aushalten, denn auf der Verbindung zwischen Seil und Basisstation lasten laut NASA bis zu 62 Gigapascal. Dadurch wird eine ausreichend tiefe, komplex zu errichtende und teure Verankerung der Basisstation im Erdreich nötig. Das liegt daran, dass beim Weltraumlift in vertikaler Richtung ein Überschuss an Zentrifugalkraft gegenüber der Gravitationskraft herrschen muss, um das Seil zu spannen, und daran, dass beim Weltraumlift in horizontaler Richtung die Corioliskraft der hinauf- oder hinabfahrenden Lasten auf die Erde übertragen wird. Ein Weltraumlift, der sich in völligem Gleichgewicht zwischen der Zentrifugalkraft und der Gravitationskraft befände, würde schon durch minimale Lasten in seiner Stabilität gestört werden, und könnte daher kein Drehmoment durch die Corioliskraft zwischen der Erde und der Last übertragen. Beim straff gespannten Weltraumlift kostet nur die Überwindung des Gewichtes der Last entlang des Höhenunterschiedes Energie, denn die Corioliskraft steht immer quer zur Bewegung der Last. Jener Teil der Energie, der zur Überwindung der Corioliskraft benötigt wird, stammt aus der Abbremsung der Erdrotation.

Energieversorgung des Liftes

Ein weiteres Problem wäre die Energieversorgung des eigentlichen Lifts. Es ist unrealistisch, die Energieversorgung durch eine im Seil integrierte Stromleitung zu sichern, da der elektrische Widerstand bei bis zu 36.000 km Länge sehr groß und der Energieverlust damit enorm wäre. Es gibt allerdings mehrere andere Möglichkeiten:

  • Die Versorgung wird durch eine Laserstation an der Basisstation gesichert. Dabei wird der Laser sehr präzise auf eine Fotovoltaikfläche gestrahlt und der Lift bezieht daraus seine Energie.
  • Das Sonnenlicht, das im Weltraum besonders stark ist, wird mithilfe von Solarmodulen eingefangen und in elektrische Energie umgewandelt. Die Sonnenkollektoren müssen aber sehr groß sein und stellen damit selbst einen erheblichen Gewichtsanteil des Lifts dar.
  • Ein sogenannter Maser erzeugt Mikrowellen, die mit einer sehr hohen Konzentration in Richtung des Lifts geworfen werden, der diese dann in elektrische Energie umwandelt.
  • Man könnte einen Kleinst-Kernreaktor zur Stromerzeugung verwenden. Wenn man den Kernreaktor an den Stromkabeln einige 100 m hinter der Liftkabine her zieht, kann man auf die schwere Strahlungsabschirmung des Reaktors verzichten. Beim Aufenthalt in der Bodenstation ruht der Kernreaktor in einem entsprechend tiefen Schacht.
  • Sonstige lokale Energieerzeugung; auch sind Hybridsysteme möglich.

Ein Raketenantrieb wird für den Satelliten nicht benötigt, denn sobald die Corioliskraft einer nach oben transportierten Last den Satelliten nach hinten zieht, bildet das Seil einen kleinen Winkel zur Senkrechten, und beschleunigt dadurch den Satelliten unter Bremsung der Erdrotation. Zu diesem Zweck ist es günstig, wenn der Satellit etwas höher über der Erdoberfläche kreist als 40.000 km, so dass er zwar geosynchron ist, aber das Seil durch seine Zentrifugalkraft spannt. Dieses Funktionsprinzip lässt sich durch den Hammerwurf veranschaulichen. So lange der Hammerwerfer mit konstanter Geschwindigkeit rotiert, zeigt das Seil des Hammers radial von der Rotationsachse weg. Wenn der Hammerwerfer seine Rotationsgeschwindigkeit erhöht, dann hinkt der Hammer hinter der radialen Ausrichtung hinterher, und kinetische Energie wird vom Hammerwerfer auf den Hammer übertragen. Der Transport der Last wird durch die Corioliskraft kaum behindert, da sie praktisch quer zur Bewegung der Last steht.

Ausbau der allgemeinen Weltrauminfrastruktur und der Raumfahrtindustrie

Es wird vermutet, dass sich durch einen Weltraumlift die Transportkosten ins Weltall drastisch senken ließen. Bei typischen Nutzlasten für Einzeltransporte in der Größenordnung von Tonnen sowie Transportdauern in der Größenordnung von einzelnen Wochen, würde ein Weltraumlift über ein Jahr gesehen eine beträchtliche Transportkapazität erreichen. Da die endgültigen Parameter des Liftes wie Geschwindigkeit, Zugfestigkeit und Kosten noch nicht feststehen, ist derzeit eine Abschätzung der Auswirkungen noch schwierig. Es herrscht allerdings Einigkeit darüber, dass wegen der gegenüber einem Raketenstart geringeren auftretenden Beschleunigungskräfte sich die Möglichkeit eröffnet, mechanisch empfindlichere Werkstücke wie Teleskopspiegel ins Weltall zu transportieren.

Weltraumlift auf dem Mond

Technisch bereits im Bereich der Möglichkeiten ist der Vorschlag von Jerome Pearson: Er möchte einen Weltraumlift auf dem Mond installieren. Wegen der im Vergleich mit der Erde geringeren Schwerkraft wäre das benötigte Seil niedrigeren Belastungen ausgesetzt. Aufgrund der langsamen Rotation des Mondes wäre ein Seil bis zum luna-stationären Orbit allerdings mit knapp 100.000 km wesentlich länger als bei einem Erd-Weltraumlift. Der Pearson-Weltraumlift würde jedoch am Lagrange-Punkt L1 oder L2 im Erde-Mond-System anknüpfen. L1 befindet sich in einem Abstand von ca. 58.000 km vom Mondmittelpunkt in Richtung Erde, der der Erde abgewandte Punkt L2 ist ca. 64.500 km vom Mondmittelpunkt entfernt. Mit heutzutage erhältlichen Seilmaterialien reicht eine Verjüngung um den Faktor 2,66.[7]

Das nötige Seil mit einer geschätzten Masse von sieben Tonnen könnte mit einer einzigen Rakete in den Weltraum befördert werden. Jerome Pearson ist Geschäftsführer des Unternehmens Star Technology and Research, das auf seiner Website auch über den Mondlift informiert.[8] Die Forschungen von Pearson an dem Projekt werden von der NASA derzeit mit 75.000 Dollar unterstützt.

Weltraumlift als Motiv in Literatur, Film und Fernsehen

Kim Stanley Robinson stellt in seiner Mars-Trilogie (Red Mars, Green Mars, Blue Mars) den Weltraumlift als Schlüsseltechnologie zur Besiedelung des Mars dar. In den Romanen verfügen Erde und Mars über Weltraumlifte, der Lift auf dem Mars wird allerdings von Separatisten des Planeten durch Sprengung des Ankerpunktes zerstört, um eine weitere Zuwanderung von Bewohnern der Erde zu verhindern.

Einen Fahrstuhl, der frei um die Welt und (versehentlich) auch in den Weltraum reicht, beschreibt Roald Dahl in seinem Kinderbuch Charlie und der große gläserne Fahrstuhl (1972), einem Nachfolger des Klassikers Charlie und die Schokoladenfabrik (1964), in dem der Fahrstuhl ebenfalls bereits Erwähnung fand.

Im Aufbauspiel Anno 2205 von Ubisoft aus dem Jahr 2015 wird der Weltraumlift als zentrales Spielelement thematisiert.[1]

Bekannt wurde die Idee des Weltraumlifts in der Öffentlichkeit, als Arthur C. Clarke und Charles Sheffield sie 1978/79 unabhängig voneinander zum zentralen Thema ihrer Romane The Fountains of Paradise (dt.: Fahrstuhl zu den Sternen) und The Web between the Worlds (dt.: Ein Netz aus tausend Sternen) verarbeiteten.

Auch im Manga-Klassiker Battle Angel Alita (ab 1991) von Yukito Kishiro dreht sich der Haupthandlungsstrang um einen Weltraumlift mit Ende im Orbit und Zwischenstation in Art einer Stadt in den Wolken.

In der Folge Die Asteroiden (englisch Rise, Staffel 3, Episode 19, 1997) der TV-Serie Star Trek: Raumschiff Voyager trifft die Besatzung der Voyager auf einen Planeten, auf dem ein Weltraumlift existiert.

Die Autoren Terry Pratchett, Ian Stewart und Jack Cohen greifen in ihrem Buch Die Gelehrten der Scheibenwelt (2000)[9] das Konzept des Weltraumliftes sowohl als Metapher als auch als physikalisch realisierbare Einrichtung auf.

Frank Schätzing verarbeitete die Thematik um den Weltraumlift in seinem 2009 erschienenen Roman Limit.

Im dritten Band der Airborn-Serie, Sternenjäger, von Kenneth Oppel verwenden die Protagonisten einen Weltraumlift um als erste Menschen ins All zu gelangen.

Alastair Reynolds stellt in seinem Roman Chasm City dar, was passiert, wenn das Seil eines Weltraumliftes zerreißt.

Julia Reda schlug im Europawahlkampf für die Piratenpartei den Bau eines Weltraumlifts vor.[10]

Weblinks

Wiktionary: Weltraumlift – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. National Space Society: Space Elevators: An Advanced Earth-Space Infrastructure for the New Millennium (pdf, englisch)
  2. Crowdfunding US-Unternehmen will Weltraumaufzug entwickeln – Artikel bei Golem.de, vom 28. August 2012, abgerufen am: 6. September 2012.
  3. Erfolgsstory Raumtransport: Wie Phoenix aus der Asche.
  4. Peter Odrich: Japaner wollen bis 2050 einen Weltraumlift bauen. In: Ingenieur.de. 1. Oktober 2014, abgerufen am 7. Oktober 2014.
  5. Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar, James Hone: Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. In: Science. Band 321, Nr. 5887, 2008, S. 385–388, doi:10.1126/science.1157996.
  6. Sukang Bae, Hyeongkeun Kim, Youngbin Lee, Xiangfan Xu, Jae-Sung Park, Yi Zheng, Jayakumar Balakrishnan, Tian Lei, Hye Ri Kim, Young Il Song, Young-Jin Kim, Kwang S. Kim, Barbaros Ozyilmaz, Jong-Hyun Ahn, Byung Hee Hong, Sumio Iijima: Roll-to-roll production of 30-inch graphene films for transparent electrodes. In: Nat Nano. Band 5, Nr. 8, 2010, S. 574–578, doi:10.1038/nnano.2010.132 (PDF [abgerufen am 5. Oktober 2010]).
  7. Jerome Pearson, Eugene Levin, John Oldson, and Harry Wykes: The Lunar Space Elevator (PDF; 365 kB), STAR Inc., Mount Pleasant, SC USA, 55th International Astronautical Congress, Vancouver, Canada, 4-8 October 2004.
  8. http://www.star-tech-inc.com/id4.html
  9. Originalausgabe The Science of Discworld, 1999
  10. Jolinde Hüchtker, Cyrill Callenius, David Fresen, Max Deibert, Simon Grothe, Xenia Heuss, Antonia Bretschkow: Ein Weltraumaufzug und krumme Gurken. In: tagesspiegel.de. 24. Mai 2014, abgerufen am 30. September 2015.