imported>HilberTraum (→Verbindung mit der Quantentheorie: BKL fix) |
imported>ZabesBot K (Bot: Räume alte Interwikilinks auf) |
||
Zeile 1: | Zeile 1: | ||
'''Lebensdauer''' (genauer: mittlere Lebensdauer) bezeichnet in der [[Physik]] die durchschnittliche „Lebenszeit“ der Mitglieder eines [[Ensemble (Physik)|Ensembles]] identischer Objekte. | |||
==Lebensdauer und Zerfallswahrscheinlichkeit== | Steht einem Objekt kein Zustand niedrigerer [[Energie]] zur Verfügung und wird ihm keine Energie zugeführt, so ist es stabil und seine Lebensdauer ist unendlich. Können die Objekte jedoch spontan in einen Zustand kleinerer Energie übergehen („zerfallen“), bilden ihre jeweiligen Lebenszeiten eine [[Häufigkeitsverteilung]], deren [[Arithmetisches Mittel|arithmetischer Mittelwert]] die Lebensdauer ist. Typischerweise spricht man von Lebensdauer im Zusammenhang mit instabilen [[Teilchen]], [[Radioaktivität|radioaktiven]] [[Atomkern]]en, sowie bei [[Atom]]en und anderen [[physikalisches System|Systemen]] in einem [[angeregter Zustand|angeregten Zustand]]. | ||
Ein eng verwandter Begriff ist die [[Halbwertszeit]]. In den [[Biowissenschaften]] hat der Begriff der [[Lebenserwartung]] eine vergleichbare Bedeutung. | |||
== Lebensdauer und Zerfallswahrscheinlichkeit == | |||
Die [[Wahrscheinlichkeitsdichtefunktion|Wahrscheinlichkeitsdichte]] <math>p</math> dafür, dass ein Mitglied des Ensembles zerfällt, folgt in der Regel einer [[Exponentialverteilung]]: | Die [[Wahrscheinlichkeitsdichtefunktion|Wahrscheinlichkeitsdichte]] <math>p</math> dafür, dass ein Mitglied des Ensembles zerfällt, folgt in der Regel einer [[Exponentialverteilung]]: | ||
:<math> p(t)=\lambda e^{-\lambda t} </math> | :<math> p(t)=\lambda e^{-\lambda t} </math> | ||
<math>\lambda</math> ist die '''Zerfallskonstante'''. Sie wird auch '''Zerfallswahrscheinlichkeit''' genannt, ist jedoch eine [[Wahrscheinlichkeit]] pro Zeiteinheit und wird meist in der Einheit 1/Sekunde angegeben. Falls mehrere [[Zerfallskanal|Zerfallskanäle]] möglich sind, ist die gesamte (''totale'') Zerfallskonstante die Summe der entsprechenden einzelnen (''partiellen'') Zerfallskonstanten. | <math>\lambda</math> ist die '''Zerfallskonstante'''. Sie wird auch '''Zerfallswahrscheinlichkeit''' genannt, ist jedoch eine [[Wahrscheinlichkeit]] pro Zeiteinheit und wird meist in der Einheit 1/Sekunde angegeben. Falls mehrere [[Zerfallskanal|Zerfallskanäle]] möglich sind, ist die gesamte (''totale'') Zerfallskonstante die Summe der entsprechenden einzelnen (''partiellen'') Zerfallskonstanten. | ||
Die Lebensdauer <math>\tau</math> ist der [[Kehrwert]] der Zerfallskonstanten: | Die Lebensdauer <math>\tau</math> ist der [[Kehrwert]] der Zerfallskonstanten: | ||
:<math> \tau=1 | :<math> \tau= \frac{1}{\lambda} </math> | ||
Sie ist daher die Zeit, nach der die Anzahl der Teilchen auf den Bruchteil 1/''[[Eulersche Zahl|e]]'' ≈ 0,368 abgefallen ist. | Sie ist daher die Zeit, nach der die Anzahl der Teilchen auf den Bruchteil 1/''[[Eulersche Zahl|e]]'' ≈ 0,368 abgefallen ist. | ||
Zeile 16: | Zeile 20: | ||
Für [[Elementarteilchen]] bekommt man eine Übersicht der verschiedenen Zerfallskanäle und Zerfallswahrscheinlichkeiten in dem von der [[Particle Data Group]] herausgegebenen [[Review of Particle Physics]] oder in dessen Kurzfassung, dem [[Particle Physics Booklet]]. | Für [[Elementarteilchen]] bekommt man eine Übersicht der verschiedenen Zerfallskanäle und Zerfallswahrscheinlichkeiten in dem von der [[Particle Data Group]] herausgegebenen [[Review of Particle Physics]] oder in dessen Kurzfassung, dem [[Particle Physics Booklet]]. | ||
==Partielle Lebensdauer== | == Partielle Lebensdauer == | ||
Wenn mehrere Zerfallskanäle bestehen, kann formal zu jeder der partiellen Zerfallskonstanten der Kehrwert als „partielle Lebensdauer“ angegeben werden; dies geschieht manchmal aus Gründen der Anschaulichkeit. Die partielle Lebensdauer ist aber eine fiktive, nicht beobachtbare Größe: Sie wäre die Lebensdauer des Systems, wenn der betreffende Zerfallskanal der einzig mögliche wäre.<ref>J. Bleck-Neuhaus: ''Elementare Teilchen''. 2. Auflage, Springer | Wenn mehrere Zerfallskanäle bestehen, kann formal zu jeder der partiellen Zerfallskonstanten der Kehrwert als „partielle Lebensdauer“ angegeben werden; dies geschieht manchmal aus Gründen der Anschaulichkeit. Die partielle Lebensdauer ist aber eine fiktive, nicht beobachtbare Größe: Sie wäre die Lebensdauer des Systems, wenn der betreffende Zerfallskanal der einzig mögliche wäre.<ref>J. Bleck-Neuhaus: ''Elementare Teilchen''. 2. Auflage, Springer 2012, ISBN 978-3-642-32578-6, Seite 161</ref> Der beobachtbare Zerfall zeigt – unabhängig davon, welcher der Zerfallskanäle beobachtet wird – immer die Lebensdauer, die der totalen Zerfallskonstanten entspricht. | ||
==Halbwertszeit== | == Halbwertszeit == | ||
Manchmal – insbesondere auf dem Gebiet der Radioaktivität – wird statt der Lebensdauer die ''[[Halbwertszeit]]'' <math>T_{1/2}</math> verwendet, d. h. die Zeit, nach welcher die Hälfte des Ensembles noch vorhanden ist. Die Halbwertszeit errechnet sich aus der Lebensdauer bzw. der Zerfallskonstante mit Hilfe von | Manchmal – insbesondere auf dem Gebiet der Radioaktivität – wird statt der Lebensdauer die ''[[Halbwertszeit]]'' <math>T_{1/2}</math> verwendet, d. h. die Zeit, nach welcher die Hälfte des Ensembles noch vorhanden ist. Die Halbwertszeit errechnet sich aus der Lebensdauer bzw. der Zerfallskonstante mit Hilfe von | ||
:<math> T_{1/2}=\tau \ln 2=\frac{\ln 2}{ \lambda} </math> | :<math> T_{1/2}=\tau \ln 2=\frac{\ln 2}{ \lambda} </math> | ||
Zeile 26: | Zeile 30: | ||
Sie beträgt damit etwa 69 % der Lebensdauer. Im Fall mehrerer Zerfallskanäle werden gelegentlich der Anschaulichkeit zuliebe – wie bei der Lebensdauer – auch fiktive partielle Halbwertszeiten genannt. | Sie beträgt damit etwa 69 % der Lebensdauer. Im Fall mehrerer Zerfallskanäle werden gelegentlich der Anschaulichkeit zuliebe – wie bei der Lebensdauer – auch fiktive partielle Halbwertszeiten genannt. | ||
Halbwertszeiten und Zerfallskanäle von [[Radionuklid]]en sind z. B. in der [[Karlsruher Nuklidkarte]] angegeben. [[Zerfallskanal#Zerfallskonstante und Verzweigungsverhältnis|Verzweigungsverhältnisse]] und weitere Daten finden sich in dem umfangreichen Buch ''Table of Isotopes''.<ref>Richard B. Firestone, Coral M. Baglin: ''Table of isotopes.'' 8. Auflage. Wiley, New York 1999, ISBN 0-471-35633-6. </ref> | Halbwertszeiten und Zerfallskanäle von [[Radionuklid]]en sind z. B. in der [[Karlsruher Nuklidkarte]] angegeben. [[Zerfallskanal#Zerfallskonstante und Verzweigungsverhältnis|Verzweigungsverhältnisse]] und weitere Daten finden sich in dem umfangreichen Buch ''Table of Isotopes''.<ref>Richard B. Firestone, Coral M. Baglin: ''Table of isotopes.'' 8. Auflage. Wiley, New York 1999, ISBN 0-471-35633-6.</ref> | ||
== Verbindung mit der Quantentheorie == | == Verbindung mit der Quantentheorie == | ||
Durch die [[heisenbergsche Unschärferelation]] lässt sich folgender Zusammenhang zwischen der Unschärfe einer beliebigen [[Observable]]n <math>A</math> und ihrer zeitlichen Entwicklung finden: | Durch die [[heisenbergsche Unschärferelation]] lässt sich folgender Zusammenhang zwischen der Unschärfe einer beliebigen [[Observable]]n <math>A</math> und ihrer zeitlichen Entwicklung finden: | ||
:<math>\Delta E\ \Delta A | :<math>\Delta E\ \Delta A | ||
\ge \frac{1}{2} \left| \langle [ H, A ] \rangle \right| | \ge \frac{1}{2} \left| \langle [ H, A ] \rangle \right| | ||
\ge \frac{\hbar}{2}\left| \frac{\mathrm d}{\mathrm dt} \langle A \rangle \right|</math> | \ge \frac{\hbar}{2}\left| \frac{\mathrm d}{\mathrm dt} \langle A \rangle \right|</math> | ||
Daraus ergibt sich eine Verbindung zwischen der Energieunschärfe oder [[Zerfallsbreite]] <math>\Gamma = 2\ \Delta E </math> | Daraus ergibt sich eine Verbindung zwischen der Energieunschärfe oder [[Zerfallsbreite]] <math>\Gamma = 2\ \Delta E </math> | ||
eines Übergangs oder Zerfalls und seiner Lebensdauer:<ref>J. Bleck-Neuhaus: ''Elementare Teilchen''. 2. Auflage, Springer | eines Übergangs oder Zerfalls und seiner Lebensdauer:<ref>J. Bleck-Neuhaus: ''Elementare Teilchen''. 2. Auflage, Springer 2012, ISBN 978-3-642-32578-6, Seite 167</ref> | ||
:<math>\Gamma\ \tau = \hbar </math> | :<math>\Gamma\ \tau = \hbar </math> | ||
Zur Bestimmung sehr kurzer Lebensdauern wird die Breite der Energieverteilung, beispielsweise von emittierten [[Photon]]en oder einem [[Peak]] in einer [[Anregungsfunktion]], gemessen und mittels dieser Formel die Lebensdauer berechnet. | Zur Bestimmung sehr kurzer Lebensdauern wird die Breite der Energieverteilung, beispielsweise von emittierten [[Photon]]en oder einem [[Peak]] in einer [[Anregungsfunktion]], gemessen und mittels dieser Formel die Lebensdauer berechnet. | ||
Eine doppelte [[Empirische Standardabweichung|Standardabweichung]] von etwa 66 keV ergibt eine Lebensdauer von 10<sup>−20</sup> Sekunden. | Eine doppelte [[Empirische Standardabweichung|Standardabweichung]] von etwa 66 keV ergibt eine Lebensdauer von 10<sup>−20</sup> Sekunden. | ||
== Siehe auch == | |||
* [[Exponentieller Prozess]] | |||
* [[Energie-Zeit-Unschärferelation]] (zur quantentheoretischen Betrachtung) | |||
* [[Lebensdauer (Technik)]] | |||
== Literatur == | == Literatur == | ||
* Fritz W. Bopp: ''Kerne, Hadronen und Elementarteilchen''. 2. Auflage, Springer 2014, ISBN 978-3-662-43666-0 | * Fritz W. Bopp: ''Kerne, Hadronen und Elementarteilchen''. 2. Auflage, Springer 2014, ISBN 978-3-662-43666-0 | ||
== Weblinks == | |||
* [https://pdg.lbl.gov/ Particle Data Group] | |||
== Einzelnachweise == | == Einzelnachweise == | ||
<references /> | <references /> | ||
[[Kategorie:Statistische Physik]] | [[Kategorie:Statistische Physik]] | ||
Lebensdauer (genauer: mittlere Lebensdauer) bezeichnet in der Physik die durchschnittliche „Lebenszeit“ der Mitglieder eines Ensembles identischer Objekte.
Steht einem Objekt kein Zustand niedrigerer Energie zur Verfügung und wird ihm keine Energie zugeführt, so ist es stabil und seine Lebensdauer ist unendlich. Können die Objekte jedoch spontan in einen Zustand kleinerer Energie übergehen („zerfallen“), bilden ihre jeweiligen Lebenszeiten eine Häufigkeitsverteilung, deren arithmetischer Mittelwert die Lebensdauer ist. Typischerweise spricht man von Lebensdauer im Zusammenhang mit instabilen Teilchen, radioaktiven Atomkernen, sowie bei Atomen und anderen Systemen in einem angeregten Zustand.
Ein eng verwandter Begriff ist die Halbwertszeit. In den Biowissenschaften hat der Begriff der Lebenserwartung eine vergleichbare Bedeutung.
Die Wahrscheinlichkeitsdichte $ p $ dafür, dass ein Mitglied des Ensembles zerfällt, folgt in der Regel einer Exponentialverteilung:
$ \lambda $ ist die Zerfallskonstante. Sie wird auch Zerfallswahrscheinlichkeit genannt, ist jedoch eine Wahrscheinlichkeit pro Zeiteinheit und wird meist in der Einheit 1/Sekunde angegeben. Falls mehrere Zerfallskanäle möglich sind, ist die gesamte (totale) Zerfallskonstante die Summe der entsprechenden einzelnen (partiellen) Zerfallskonstanten.
Die Lebensdauer $ \tau $ ist der Kehrwert der Zerfallskonstanten:
Sie ist daher die Zeit, nach der die Anzahl der Teilchen auf den Bruchteil 1/e ≈ 0,368 abgefallen ist.
Für Elementarteilchen bekommt man eine Übersicht der verschiedenen Zerfallskanäle und Zerfallswahrscheinlichkeiten in dem von der Particle Data Group herausgegebenen Review of Particle Physics oder in dessen Kurzfassung, dem Particle Physics Booklet.
Wenn mehrere Zerfallskanäle bestehen, kann formal zu jeder der partiellen Zerfallskonstanten der Kehrwert als „partielle Lebensdauer“ angegeben werden; dies geschieht manchmal aus Gründen der Anschaulichkeit. Die partielle Lebensdauer ist aber eine fiktive, nicht beobachtbare Größe: Sie wäre die Lebensdauer des Systems, wenn der betreffende Zerfallskanal der einzig mögliche wäre.[1] Der beobachtbare Zerfall zeigt – unabhängig davon, welcher der Zerfallskanäle beobachtet wird – immer die Lebensdauer, die der totalen Zerfallskonstanten entspricht.
Manchmal – insbesondere auf dem Gebiet der Radioaktivität – wird statt der Lebensdauer die Halbwertszeit $ T_{1/2} $ verwendet, d. h. die Zeit, nach welcher die Hälfte des Ensembles noch vorhanden ist. Die Halbwertszeit errechnet sich aus der Lebensdauer bzw. der Zerfallskonstante mit Hilfe von
Sie beträgt damit etwa 69 % der Lebensdauer. Im Fall mehrerer Zerfallskanäle werden gelegentlich der Anschaulichkeit zuliebe – wie bei der Lebensdauer – auch fiktive partielle Halbwertszeiten genannt.
Halbwertszeiten und Zerfallskanäle von Radionukliden sind z. B. in der Karlsruher Nuklidkarte angegeben. Verzweigungsverhältnisse und weitere Daten finden sich in dem umfangreichen Buch Table of Isotopes.[2]
Durch die heisenbergsche Unschärferelation lässt sich folgender Zusammenhang zwischen der Unschärfe einer beliebigen Observablen $ A $ und ihrer zeitlichen Entwicklung finden:
Daraus ergibt sich eine Verbindung zwischen der Energieunschärfe oder Zerfallsbreite $ \Gamma =2\ \Delta E $ eines Übergangs oder Zerfalls und seiner Lebensdauer:[3]
Zur Bestimmung sehr kurzer Lebensdauern wird die Breite der Energieverteilung, beispielsweise von emittierten Photonen oder einem Peak in einer Anregungsfunktion, gemessen und mittels dieser Formel die Lebensdauer berechnet. Eine doppelte Standardabweichung von etwa 66 keV ergibt eine Lebensdauer von 10−20 Sekunden.