imported>Kabelstapel K |
imported>JuTe CLZ (Die 2 letzten Textänderungen von 2003:C9:706:4500:A5BF:3F7A:1561:E5CD wurden verworfen und die Version 199520313 von Aka wiederhergestellt. Das möge man bitte etwas ausführlicher begründen.) |
||
Zeile 1: | Zeile 1: | ||
Eine '''Raumladungszone''' (RLZ), auch '''Verarmungszone''' oder '''Sperrschicht''' genannt, ist im Übergang zwischen unterschiedlich [[Dotierung|dotierten]] [[Halbleiter]]n ein Bereich, in dem sich [[Raumladung]]en mit Überschuss und Mangel an [[Ladungsträger (Physik)|Ladungsträgern]] gegenüberstehen, so dass diese Zone im Gleichgewichtsfall nach außen ladungsneutral erscheint. Je nach Polarität einer von außen angelegten [[ | Eine '''Raumladungszone''' (RLZ), auch '''Verarmungszone''' oder '''Sperrschicht''' genannt, ist im Übergang zwischen unterschiedlich [[Dotierung|dotierten]] [[Halbleiter]]n ein Bereich, in dem sich [[Raumladung]]en mit Überschuss und Mangel an [[Ladungsträger (Physik)|Ladungsträgern]] gegenüberstehen, so dass diese Zone im Gleichgewichtsfall nach außen ladungsneutral erscheint. Je nach [[Polarität (Physik)|Polarität]] einer von außen angelegten [[Elektrische Spannung|elektrischen Spannung]] ergeben sich unterschiedliche Konfigurationen an [[Elektrisches Feld|elektrischen Feldern]] und dadurch im Bereich der Verarmungszone eine gute oder aber nur sehr schwache [[elektrische Leitfähigkeit]] (es "sperrt"). | ||
Dieser physikalische Effekt stellt die Grundlage für die [[Gleichrichter|gleichrichtende]] Funktion des [[Halbleiterbauelement]]s [[Diode]] dar. Daneben spielen Raumladungszonen auch in anderen elektronischen Bauelementen eine grundlegende Rolle, z. B. in [[Bipolartransistor]]en oder in [[Sperrschicht-Feldeffekttransistor]]en. | |||
== Entstehung == | == Entstehung == | ||
[[Datei:Pn Junction Diffusion and Drift.svg|mini | [[Datei:Pn Junction Diffusion and Drift.svg|mini|Oben der p-n-Übergang vor dem Diffusionsprozess, darunter nach dem Diffusionsausgleich im Gleichgewicht und aufgebauten elektrischen Feld im Bereich der RLZ]] | ||
[[Datei:PNjunction2.png|mini|[[Banddiagramm]] eines p-n-Übergangs]] | [[Datei:PNjunction2.png|mini|[[Banddiagramm]] eines p-n-Übergangs]] | ||
Wenn zwei unterschiedlich dotierte Halbleitermaterialien, ein n- und ein p-dotierter Halbleiter, räumlich | Wenn zwei unterschiedlich dotierte Halbleitermaterialien, ein n- und ein p-dotierter Halbleiter, räumlich in Kontakt gebracht werden, entsteht ein [[p-n-Übergang]]. Im n-Bereich liegt ein Überschuss an negativ geladenen [[Elektron]]en vor, im p-Bereich ein Überschuss an positiv geladenen [[Defektelektron]]en, auch als ''Löcher'' bezeichnete positiv geladene [[Störstelle]]n im Halbleiterkristall. | ||
Durch den [[Konzentrationsgefälle|Konzentrationsgradient]] von Ladungsträgern im Übergangsbereich zwischen n- und p-Zone kommt es zu einer [[Diffusion]] von Ladungsträgern: Elektronen aus dem n-Bereich wandern in den p-dotierten Halbleiter, Defektelektronen diffundieren in den n-dotierten Halbleiter ([[Diffusionsstrom]]). Die Ladungsträger [[Rekombination (Physik)|rekombinieren]] dort mit dem jeweils anderen Ladungsträgertyp. In Summe bildet sich damit im Übergangsbereich im p-Halbleiter ein Überschuss an negativer Raumladung, im n-Halbleiter ein Überschuss an positiver Raumladung; die so gebildete Raumladungszone verarmt in Folge der Rekombination freier (beweglicher) Ladungsträger. | |||
Das dadurch gebildete [[elektrisches Feld|elektrische Feld]] in der Raumladungszone wirkt einer weiteren Diffusion von Ladungsträgern aus den beiden Zonen entgegen ([[Antidiffusionsspannung]]), da das Feld einen entgegengesetzten ''Driftstrom'' erzeugt. Es bildet sich ein Gleichgewichtsfall, in dem sich Diffusionsstrom und Driftstrom von Ladungsträgern das Gleichgewicht halten, wie in nebenstehender Abbildung an der räumlichen Verteilung und im Feldverlauf dargestellt. Von außen betrachtet ist die RLZ im Gleichgewicht feldfrei; es gibt ''keinen'' Potentialgradienten, der Ladungsträger über sie hinweg transportiert. | |||
Da Diffusionsprozesse stark temperaturabhängig sind, verändert sich die Größe der Raumladungszone in Folge von Temperaturänderungen. | |||
== Verhalten beim Anlegen einer externen Spannung == | == Verhalten beim Anlegen einer externen Spannung == | ||
Wird an den beiden Halbleiterschichten von außen eine elektrische Spannung angelegt, bewirkt | Wird an den beiden Halbleiterschichten von außen eine elektrische Spannung angelegt, so bewirkt dies zusätzlich zum Feld der Raumladungszone im Gleichgewichtsfall ein weiteres elektrisches Feld im Halbleiter. Beide Felder überlagern sich. Je nach Polarität der externen Spannung lassen sich zwei wesentliche Fälle unterscheiden, welche für die grundlegenden Funktionen von elektronischen Bauelementen wie Dioden bestimmend sind: | ||
# Im Sperrfall (der p-Halbleiter wird mit einer negativen Spannung gegenüber dem n-Halbleiter beaufschlagt) verstärkt sich die [[elektrische Feldstärke]] im Bereich der Raumladungszone und führt zu einem erhöhten Driftstrom. Die Raumladungszone nimmt in der Größe zu, bis sich ein neues Gleichgewicht einstellt. Da die Dichte an freien Ladungsträgern in der Raumladungszone gering bleibt, ist die elektrische Leitfähigkeit gering und auf einen kleinen [[Sperrstrom]] beschränkt.<br />Wird die externe Spannung weiter gesteigert, kommt es, je nach Aufbau des Halbleiters, zu verschiedenen Durchbrüchen wie dem [[Zener-Effekt]] und bei größeren Feldstärken zum [[Lawinendurchbruch]]. Diese Durchbruchseffekte können unkontrolliert zur Zerstörung des Halbleitermaterials führen oder wie bei [[Zener-Diode]]n gezielt angewendet werden. | |||
# Im Sperrfall | # Im Durchlassfall (der p-Halbleiter wird mit einer positiven Spannung gegenüber dem n-Halbleiter beaufschlagt) verringert sich die Raumladungszone, da das durch die externe Spannung ausgelöste elektrische Feld dem elektrischen Feld der Raumladungszone entgegenwirkt. Der durch die RLZ verursachte Driftstrom nimmt ab und der Diffusionsstrom dominiert. Die Dichte an freien Ladungsträgern in der Übergangszone nimmt mit der externen Spannung stark zu, der p-n-Übergang ist elektrisch gut leitfähig. Die mathematische Beschreibung erfolgt in diesem Fall durch die [[Shockley-Gleichung]]. | ||
# Im Durchlassfall | |||
== Metall-Halbleiter-Kontakt == | == Metall-Halbleiter-Kontakt == | ||
Raumladungszonen bilden sich neben n- und p-dotierten Halbleitern auch an [[Metall-Halbleiter-Kontakt]]en aus und können zu gleichrichtendem Verhalten dieser Kontakte führen, dem | Raumladungszonen bilden sich neben n- und p-dotierten Halbleitern auch an [[Metall-Halbleiter-Kontakt]]en aus und können zu gleichrichtendem Verhalten dieser Kontakte führen, dem [[Schottky-Kontakt]], welcher in [[Schottky-Diode]]n angewendet wird. Durch die hohe Anzahl freier Elektronen im Metall beschränkt sich die Raumladungszone allerdings fast nur auf das entsprechende Halbleitergebiet. | ||
== Literatur == | == Literatur == | ||
*{{Literatur | *{{Literatur | ||
|Autor = Robert F. Pierret | |Autor=Robert F. Pierret | ||
|Titel = Semiconductor Device Fundamentals | |Titel=Semiconductor Device Fundamentals | ||
|Verlag = Addison Wesley | | |Auflage=2. | ||
*{{Literatur | Autor = Holger Göbel | Titel = Einführung in die Halbleiter-Schaltungstechnik | Auflage = 2., bearb. und erw. | Verlag = Springer | Ort= Berlin/Heidelberg | | |Verlag=Addison-Wesley | ||
|Datum=1996 | |||
|ISBN=978-0-201-54393-3}} | |||
*{{Literatur | |||
|Autor=Holger Göbel | |||
|Titel=Einführung in die Halbleiter-Schaltungstechnik | |||
|Auflage=2., bearb. und erw. | |||
|Verlag=Springer | |||
|Ort=Berlin/Heidelberg | |||
|ISBN=3540340297 | |||
|Datum=2006}} | |||
[[Kategorie:Festkörperphysik]] | [[Kategorie:Festkörperphysik]] | ||
[[Kategorie: | [[Kategorie:Halbleiterelektronik]] |
Eine Raumladungszone (RLZ), auch Verarmungszone oder Sperrschicht genannt, ist im Übergang zwischen unterschiedlich dotierten Halbleitern ein Bereich, in dem sich Raumladungen mit Überschuss und Mangel an Ladungsträgern gegenüberstehen, so dass diese Zone im Gleichgewichtsfall nach außen ladungsneutral erscheint. Je nach Polarität einer von außen angelegten elektrischen Spannung ergeben sich unterschiedliche Konfigurationen an elektrischen Feldern und dadurch im Bereich der Verarmungszone eine gute oder aber nur sehr schwache elektrische Leitfähigkeit (es "sperrt").
Dieser physikalische Effekt stellt die Grundlage für die gleichrichtende Funktion des Halbleiterbauelements Diode dar. Daneben spielen Raumladungszonen auch in anderen elektronischen Bauelementen eine grundlegende Rolle, z. B. in Bipolartransistoren oder in Sperrschicht-Feldeffekttransistoren.
Wenn zwei unterschiedlich dotierte Halbleitermaterialien, ein n- und ein p-dotierter Halbleiter, räumlich in Kontakt gebracht werden, entsteht ein p-n-Übergang. Im n-Bereich liegt ein Überschuss an negativ geladenen Elektronen vor, im p-Bereich ein Überschuss an positiv geladenen Defektelektronen, auch als Löcher bezeichnete positiv geladene Störstellen im Halbleiterkristall.
Durch den Konzentrationsgradient von Ladungsträgern im Übergangsbereich zwischen n- und p-Zone kommt es zu einer Diffusion von Ladungsträgern: Elektronen aus dem n-Bereich wandern in den p-dotierten Halbleiter, Defektelektronen diffundieren in den n-dotierten Halbleiter (Diffusionsstrom). Die Ladungsträger rekombinieren dort mit dem jeweils anderen Ladungsträgertyp. In Summe bildet sich damit im Übergangsbereich im p-Halbleiter ein Überschuss an negativer Raumladung, im n-Halbleiter ein Überschuss an positiver Raumladung; die so gebildete Raumladungszone verarmt in Folge der Rekombination freier (beweglicher) Ladungsträger.
Das dadurch gebildete elektrische Feld in der Raumladungszone wirkt einer weiteren Diffusion von Ladungsträgern aus den beiden Zonen entgegen (Antidiffusionsspannung), da das Feld einen entgegengesetzten Driftstrom erzeugt. Es bildet sich ein Gleichgewichtsfall, in dem sich Diffusionsstrom und Driftstrom von Ladungsträgern das Gleichgewicht halten, wie in nebenstehender Abbildung an der räumlichen Verteilung und im Feldverlauf dargestellt. Von außen betrachtet ist die RLZ im Gleichgewicht feldfrei; es gibt keinen Potentialgradienten, der Ladungsträger über sie hinweg transportiert.
Da Diffusionsprozesse stark temperaturabhängig sind, verändert sich die Größe der Raumladungszone in Folge von Temperaturänderungen.
Wird an den beiden Halbleiterschichten von außen eine elektrische Spannung angelegt, so bewirkt dies zusätzlich zum Feld der Raumladungszone im Gleichgewichtsfall ein weiteres elektrisches Feld im Halbleiter. Beide Felder überlagern sich. Je nach Polarität der externen Spannung lassen sich zwei wesentliche Fälle unterscheiden, welche für die grundlegenden Funktionen von elektronischen Bauelementen wie Dioden bestimmend sind:
Raumladungszonen bilden sich neben n- und p-dotierten Halbleitern auch an Metall-Halbleiter-Kontakten aus und können zu gleichrichtendem Verhalten dieser Kontakte führen, dem Schottky-Kontakt, welcher in Schottky-Dioden angewendet wird. Durch die hohe Anzahl freier Elektronen im Metall beschränkt sich die Raumladungszone allerdings fast nur auf das entsprechende Halbleitergebiet.