Barrer: Unterschied zwischen den Versionen

Barrer: Unterschied zwischen den Versionen

imported>Kein Einstein
 
imported>Gardini
K
 
Zeile 2: Zeile 2:
| Name            = Barrer
| Name            = Barrer
| Einheitenzeichen =  
| Einheitenzeichen =  
| PhysGröße        = [[Permeabilität (Festkörper)]]
| PhysGröße        = [[Permeabilität (Materie)]]
| Formelzeichen    =  
| Formelzeichen    =  
| System          = [[Technisches Maßsystem]]
| System          = [[Technisches Maßsystem]]
| Dimension        = <math>\mathsf{L^3 \; T \; M^{-1}}</math>
| Dimension        = <math>\mathsf{L^3 \; T \; M^{-1}}</math>
| SI              = <math>1 \, \text{Barrer} \approx 7,5006 \cdot 10^{-18} \; \frac{{\text{m}^{3}} \cdot \text{s}}{\text{kg}}</math>
| SI              = <math>1 \ \text{Barrer} \approx 7{,}5006 \cdot 10^{-18} \, \frac{{\text{m}^{3}} \cdot \text{s}}{\text{kg}}</math>
| CGS              = <math>1 \, \text{Barrer} = 10^{-10} \; \frac{{\text{cm}^{3}}}{\text{s} \cdot \text{cm} \cdot \text{cmHg}}</math>
| CGS              = <math>1 \ \text{Barrer} = 10^{-10} \, \frac{{\text{cm}^{3}}}{\text{s} \cdot \text{cm} \cdot \text{cmHg}}</math>
| BenanntNach      = [[Richard Barrer]]
| BenanntNach      = [[Richard Barrer]]
| AbgeleitetVon    = [[Torr]], [[Zentimeter]],  [[Sekunde]]
| AbgeleitetVon    = [[Torr]], [[Zentimeter]],  [[Sekunde]]
| SieheAuch        =  
| SieheAuch        =  
}}
}}
'''Barrer''' (nach [[Richard Barrer|Richard Maling Barrer]]) ist eine [[Maßeinheit|Einheit]] im [[Technisches Maßsystem|Technischen Maßsystem]] (''keine'' [[SI-Einheit]]) für die [[Permeabilität (Festkörper)|Gaspermeabilität]] von Stoffen. Die Einheit wird u.a. bei der Beschreibung der Eigenschaften von [[Membrantechnik|Membranen]] und [[Dichtung (Technik)|Dichtung]]smaterialien verwendet.
'''Barrer''' (nach [[Richard Barrer|Richard Maling Barrer]]) ist eine [[Maßeinheit|Einheit]] im [[Technisches Maßsystem|Technischen Maßsystem]] (''keine'' [[SI-Einheit]]) für die [[Permeabilität (Materie)|Gaspermeabilität]] von Stoffen. Die Einheit wird u.&nbsp;a. bei der Beschreibung der Eigenschaften von [[Membrantechnik|Membranen]] und [[Dichtung (Technik)|Dichtung]]smaterialien verwendet.


Eine vergleichbare Einheit, welche die [[Permeabilität (Geowissenschaften)|Permeabilität]] [[porös]]er Stoffe für Flüssigkeiten beschreibt, ist das [[Darcy (Einheit)|Darcy]].
Eine vergleichbare Einheit, welche die Permeabilität [[porös]]er Stoffe für Flüssigkeiten beschreibt, ist das [[Darcy (Einheit)|Darcy]].


== Definition ==
== Definition ==
Abweichend von der [[Permeabilität (Geowissenschaften)|Permeabilität]] <math>K</math> (SI-Einheit m²) ist die Permeabilität im Sinne des Barrer definiert als:
Abweichend von der [[Permeabilität (Geowissenschaften)|geotechnischen Permeabilität]] <math>K</math> (SI-Einheit m²) ist die Permeabilität im Sinne des Barrer definiert als:


:<math>\frac{K}{\eta} = \frac{Q \, x}{A \, \Delta p}</math>
:<math>\frac{K}{\eta} = \frac{Q \, x}{A \, \Delta p}</math>


mit
mit
* der dynamischen Viskosität <math>\eta</math> (SI-Einheit <math>\tfrac{N \cdot s}{m^2} = \tfrac{kg}{m \cdot s}</math>)
* der dynamischen Viskosität <math>\eta</math> (SI-Einheit <math>\tfrac{\mathrm N \cdot \mathrm s}{\mathrm m^2} = \tfrac{\mathrm{kg}}{\mathrm m \cdot \mathrm s}</math>)
* der [[Volumenstrom|Durchflussrate]] (Permeationsrate) <math>Q</math> durch das Material, bezogen auf das Volumen unter [[Normbedingungen]] und daher angegeben in cm<sup>3</sup>/&nbsp;s
* der [[Volumenstrom|Durchflussrate]] (Permeationsrate) <math>Q</math> durch das Material, bezogen auf das Volumen unter [[Normbedingungen]] und daher angegeben in cm<sup>3</sup>/s
* der Dicke <math>x</math> des Materials in cm
* der Dicke <math>x</math> des Materials in cm
* der durchströmten Fläche <math>A</math> in cm²
* der durchströmten Fläche <math>A</math> in cm<sup>2</sup>
* der [[Druck (Physik)|Druck]]<nowiki/>differenz <math>\Delta p</math> in [[Torr|cmHg]].
* der [[Druck (Physik)|Druck]]<nowiki/>differenz <math>\Delta p</math> in [[Torr|cmHg]].


Zeile 31: Zeile 31:


:<math>\begin{align}
:<math>\begin{align}
1 \, \text{Barrer} & = 10^{-10} \; \frac{{cm^{3}}}{s} \cdot \frac{cm}{cm^{2} \cdot cmHg}\\
1 \ \text{Barrer} & = 10^{-10} \, \frac{{\mathrm{cm}^{3}}}{\mathrm s} \cdot \frac{\mathrm{cm}}{\mathrm{cm}^{2} \cdot\mathrm{cmHg}}\\
             & = 10^{-10} \; \frac{{cm^{3}}}{s \cdot cm \cdot cmHg}
             & = 10^{-10} \, \frac{{\mathrm{cm}^{3}}}{\mathrm s \cdot \mathrm{cm} \cdot \mathrm{cmHg}}
\end{align}</math>
\end{align}</math>


Zeile 38: Zeile 38:


::<math>\begin{align}
::<math>\begin{align}
1 \, \text{Barrer} & \approx 10^{-10} \; \frac{10^{-6} \, {m^{3}}}{s \cdot 10^{-2} \, m \cdot 1,33322 \cdot 10^{3} \, Pa}\\
1 \ \text{Barrer} & \approx 10^{-10} \, \frac{10^{-6} \, {\mathrm m^{3}}}{s \cdot 10^{-2} \, \mathrm m \cdot 1{,}33322 \cdot 10^{3} \, \mathrm{Pa}}\\
                   & \approx 7,5006 \cdot 10^{-18} \; \frac{{m^{3}}}{s \cdot m \cdot Pa}\\
                   & \approx 7{,}5006 \cdot 10^{-18} \, \frac{{\mathrm m^{3}}}{\mathrm s \cdot \mathrm m \cdot \mathrm{Pa}}\\
                   & \approx 7,5006 \cdot 10^{-18} \; \frac{{m^{3}} \cdot s}{kg}
                   & \approx 7{,}5006 \cdot 10^{-18} \, \frac{{\mathrm m^{3}} \cdot \mathrm s}{\mathrm{kg}}
\end{align}</math>
\end{align}</math>


Zeile 46: Zeile 46:


:<math>\begin{align}
:<math>\begin{align}
p \cdot V                                & = n              \cdot R_m \cdot T\\
p \cdot V                                & = n              \cdot R_\mathrm m \cdot T\\
\Leftrightarrow Q = \frac{V}{t}          & = \frac{n}{t} \, \frac{R_m \cdot T}{p}\\
\Leftrightarrow Q = \frac{V}{t}          & = \frac{n}{t} \, \frac{R_\mathrm m \cdot T}{p}\\
\Leftrightarrow \dot n                  & = \frac{Q \cdot p}    {R_m \cdot T}\\
\Leftrightarrow \dot n                  & = \frac{Q \cdot p}    {R_\mathrm m \cdot T}\\
\Rightarrow 1 \, \frac{{m^{3}}}{s} \cdot \frac{101325 \, Pa}{8,314 \, \tfrac{J}{mol \, K} \cdot 273,15 \, K} & \approx 44,6 \, \frac{mol}{s}
\Rightarrow 1 \, \frac{{\mathrm m^{3}}}{\mathrm s} \cdot \frac{101325 \, \mathrm{Pa}}{8{,}314 \, \tfrac{\mathrm J}{\mathrm{mol} \, \mathrm K} \cdot 273{,}15 \, \mathrm K} & \approx 44{,}6 \, \frac{\mathrm{mol}}{\mathrm s}
\end{align}</math>
\end{align}</math>


mit
mit
* ''p'' - [[Druck (Physik)|Druck]]
* ''p'' [[Druck (Physik)|Druck]]
* ''V'' - [[Volumen]]
* ''V'' [[Volumen]]
* ''n'' - [[Stoffmenge]]
* ''n'' [[Stoffmenge]]
* ''R<sub>m</sub>'' - [[Universelle Gaskonstante|universelle oder molare Gaskonstante]]
* ''R''<sub>m</sub> [[Universelle Gaskonstante|universelle oder molare Gaskonstante]]
* ''T'' - [[absolute Temperatur]]
* ''T'' [[absolute Temperatur]]
* ''t'' - [[Zeit]].
* ''t'' [[Zeit]].


Damit ergibt sich:
Damit ergibt sich:


<math>\begin{align}
<math>\begin{align}
\dots \Rightarrow 1 \, \text{Barrer} & \approx 7,5006 \cdot 10^{-18} \cdot 44,6 \, mol \cdot \frac{s}{kg}\\
\dots \Rightarrow 1 \ \text{Barrer} & \approx 7{,}5006 \cdot 10^{-18} \cdot 44{,}6 \, \mathrm{mol} \cdot \frac{\mathrm s}{\mathrm{kg}}\\
                                     & \approx 3,346  \cdot 10^{-16} \, \frac{mol \cdot s}{kg}
                                     & \approx 3{,}346  \cdot 10^{-16} \, \frac{\mathrm{mol} \cdot \mathrm s}{\mathrm{kg}}
\end{align}</math>
\end{align}</math>


Zeile 88: Zeile 88:


mit
mit
* ''P'' - Verlustleistung in <math>mbar \cdot \frac{l}{s} = 10^2 \, Pa \cdot 10^{-3}\, \frac{m^3}{s} = 0,1 \, W</math> (W = [[Watt (Einheit)|Watt]])
* ''P'' Verlustleistung in <math>\mathrm{mbar} \cdot \frac{\mathrm l}{\mathrm s} = 10^2 \, \mathrm{Pa} \cdot 10^{-3}\, \frac{\mathrm m^3}{\mathrm s} = 0{,}1 \, \mathrm W</math> (W = [[Watt (Einheit)|Watt]])
* ''x'' - Länge des Permeationspfades in&nbsp;cm
* ''x'' Länge des Permeationspfades in&nbsp;cm
* ''A'' - Permeationsquerschnitt in&nbsp;cm<sup>2</sup>
* ''A'' Permeationsquerschnitt in&nbsp;cm<sup>2</sup>
* <math>\Delta p</math> - Partialdruckdifferenz in&nbsp;bar.
* <math>\Delta p</math> Partialdruckdifferenz in&nbsp;bar.


Der Permeationskoeffizient <math>C</math> beträgt z.&nbsp;B. für
Der Permeationskoeffizient <math>C</math> beträgt z.&nbsp;B. für
* [[Helium]] durch [[Teflon]]: <math>C = 523 \cdot 10^{-4} \, \frac{m^2}{s} = 523 \, \frac{mbar \cdot \tfrac{l}{s} \cdot cm}{cm^2 \cdot bar}</math>
* [[Helium]] durch [[Teflon]]: <math>C = 523 \cdot 10^{-4} \, \frac{\mathrm m^2}{\mathrm s} = 523 \, \frac{\mathrm{mbar} \cdot \tfrac{\mathrm l}{\mathrm s} \cdot \mathrm{cm}}{\mathrm{cm}^2 \cdot \mathrm{bar}}</math>
* [[Wasserstoff]] durch Teflon: <math>C = 17,8 \cdot 10^{-4} \, \frac{m^2}{s}</math>
* [[Wasserstoff]] durch Teflon: <math>C = 17{,}8 \cdot 10^{-4} \, \frac{\mathrm m^2}{\mathrm s}</math>
* Helium durch [[Pyrex]]-Glas: <math>C = 0,09 \cdot 10^{-4} \, \frac{m^2}{s}</math>.
* Helium durch [[Pyrex]]-Glas: <math>C = 0{,}09 \cdot 10^{-4} \, \frac{\mathrm m^2}{\mathrm s}</math>.


Aufgelöst nach der Verlustleistung ergibt sich:
Aufgelöst nach der Verlustleistung ergibt sich:
Zeile 102: Zeile 102:
:<math>\Leftrightarrow P = 10^{-8} \cdot \frac{C \cdot A \cdot \Delta p}{x}.</math>
:<math>\Leftrightarrow P = 10^{-8} \cdot \frac{C \cdot A \cdot \Delta p}{x}.</math>


So ist z. B. die Verlustleistung von Helium durch eine Teflonmembrane mit einer Dicke <math>x = 1 \, mm</math> und einer Fläche <math>A = 10 \, cm^2</math> bei einer Druckdifferenz <math>\Delta p = 1 \, bar</math>:
So ist z. B. die Verlustleistung von Helium durch eine Teflonmembrane mit einer Dicke <math>x = 1 \, \mathrm{mm}</math> und einer Fläche <math>A = 10 \, \mathrm{cm}^2</math> bei einer Druckdifferenz <math>\Delta p = 1 \, \mathrm{bar}</math>:


:<math>\begin{align}
:<math>\begin{align}
P & = 10^{-8} \cdot \frac{523 \, \frac{mbar \cdot \tfrac{l}{s} \cdot cm}{cm^2 \cdot bar}    \cdot 10 \, cm^2 \cdot 1 \, bar}{1 \, cm}\\
P & = 10^{-8} \cdot \frac{523 \, \frac{\mathrm{mbar} \cdot \tfrac{\mathrm l}{\mathrm s} \cdot \mathrm{cm}}{\mathrm{cm}^2 \cdot \mathrm{bar}}    \cdot 10 \, \mathrm{cm}^2 \cdot 1 \, \mathrm{bar}}{1 \, \mathrm{cm}}\\
   & = 5,23 \cdot 10^{-5} \, mbar \cdot \frac{l}{s}\\
   & = 5{,}23 \cdot 10^{-5} \, \mathrm{mbar} \cdot \frac{\mathrm l}{\mathrm s}\\
   & = 5,23 \, \mu W
   & = 5{,}23 \,\mu\mathrm W
\end{align}</math>
\end{align}</math>


Zeile 120: Zeile 120:
[[Kategorie:Membrantechnik]]
[[Kategorie:Membrantechnik]]
[[Kategorie:Maßeinheit (Physik)]]
[[Kategorie:Maßeinheit (Physik)]]
[[Kategorie:Technische Maßeinheit]]

Aktuelle Version vom 21. November 2021, 11:49 Uhr

Physikalische Einheit
Einheitenname Barrer

Physikalische Größe(n) Permeabilität (Materie)
Dimension $ {\mathsf {L^{3}\;T\;M^{-1}}} $
System Technisches Maßsystem
In SI-Einheiten $ 1\ {\text{Barrer}}\approx 7{,}5006\cdot 10^{-18}\,{\frac {{{\text{m}}^{3}}\cdot {\text{s}}}{\text{kg}}} $
In CGS-Einheiten $ 1\ {\text{Barrer}}=10^{-10}\,{\frac {{\text{cm}}^{3}}{{\text{s}}\cdot {\text{cm}}\cdot {\text{cmHg}}}} $
Benannt nach Richard Barrer
Abgeleitet von Torr, Zentimeter, Sekunde

Barrer (nach Richard Maling Barrer) ist eine Einheit im Technischen Maßsystem (keine SI-Einheit) für die Gaspermeabilität von Stoffen. Die Einheit wird u. a. bei der Beschreibung der Eigenschaften von Membranen und Dichtungsmaterialien verwendet.

Eine vergleichbare Einheit, welche die Permeabilität poröser Stoffe für Flüssigkeiten beschreibt, ist das Darcy.

Definition

Abweichend von der geotechnischen Permeabilität $ K $ (SI-Einheit m²) ist die Permeabilität im Sinne des Barrer definiert als:

$ {\frac {K}{\eta }}={\frac {Q\,x}{A\,\Delta p}} $

mit

  • der dynamischen Viskosität $ \eta $ (SI-Einheit $ {\tfrac {\mathrm {N} \cdot \mathrm {s} }{\mathrm {m} ^{2}}}={\tfrac {\mathrm {kg} }{\mathrm {m} \cdot \mathrm {s} }} $)
  • der Durchflussrate (Permeationsrate) $ Q $ durch das Material, bezogen auf das Volumen unter Normbedingungen und daher angegeben in cm3/s
  • der Dicke $ x $ des Materials in cm
  • der durchströmten Fläche $ A $ in cm2
  • der Druckdifferenz $ \Delta p $ in cmHg.

Das Barrer ist definiert als:

$ {\begin{aligned}1\ {\text{Barrer}}&=10^{-10}\,{\frac {\mathrm {cm} ^{3}}{\mathrm {s} }}\cdot {\frac {\mathrm {cm} }{\mathrm {cm} ^{2}\cdot \mathrm {cmHg} }}\\&=10^{-10}\,{\frac {\mathrm {cm} ^{3}}{\mathrm {s} \cdot \mathrm {cm} \cdot \mathrm {cmHg} }}\end{aligned}} $

Umrechnung in SI-Einheiten:

$ {\begin{aligned}1\ {\text{Barrer}}&\approx 10^{-10}\,{\frac {10^{-6}\,{\mathrm {m} ^{3}}}{s\cdot 10^{-2}\,\mathrm {m} \cdot 1{,}33322\cdot 10^{3}\,\mathrm {Pa} }}\\&\approx 7{,}5006\cdot 10^{-18}\,{\frac {\mathrm {m} ^{3}}{\mathrm {s} \cdot \mathrm {m} \cdot \mathrm {Pa} }}\\&\approx 7{,}5006\cdot 10^{-18}\,{\frac {{\mathrm {m} ^{3}}\cdot \mathrm {s} }{\mathrm {kg} }}\end{aligned}} $

Nebenrechnung: die Flussrate kann über das ideale Gasgesetz auch in mol/s dargestellt werden (vgl. Molvolumen):

$ {\begin{aligned}p\cdot V&=n\cdot R_{\mathrm {m} }\cdot T\\\Leftrightarrow Q={\frac {V}{t}}&={\frac {n}{t}}\,{\frac {R_{\mathrm {m} }\cdot T}{p}}\\\Leftrightarrow {\dot {n}}&={\frac {Q\cdot p}{R_{\mathrm {m} }\cdot T}}\\\Rightarrow 1\,{\frac {\mathrm {m} ^{3}}{\mathrm {s} }}\cdot {\frac {101325\,\mathrm {Pa} }{8{,}314\,{\tfrac {\mathrm {J} }{\mathrm {mol} \,\mathrm {K} }}\cdot 273{,}15\,\mathrm {K} }}&\approx 44{,}6\,{\frac {\mathrm {mol} }{\mathrm {s} }}\end{aligned}} $

mit

Damit ergibt sich:

$ {\begin{aligned}\dots \Rightarrow 1\ {\text{Barrer}}&\approx 7{,}5006\cdot 10^{-18}\cdot 44{,}6\,\mathrm {mol} \cdot {\frac {\mathrm {s} }{\mathrm {kg} }}\\&\approx 3{,}346\cdot 10^{-16}\,{\frac {\mathrm {mol} \cdot \mathrm {s} }{\mathrm {kg} }}\end{aligned}} $

Permeationsrate

Die Rate der Gaspermeation folgt der Richtung der Partialdruckdifferenz:

$ \dots \Leftrightarrow Q={\frac {K\,A\,\Delta p}{\eta \,x}} $

Sie nimmt linear zu mit dem Druck und mit dem Durchdringungsquerschnitt, sie nimmt linear ab mit der Länge des Permeationsweges und verhält sich wie eine molekulare Strömung.

Permeationskoeffizient

In der Lecksuchtechnik gibt man statt der Permeationsrate $ Q $ ihr Produkt mit der Druckdifferenz $ \Delta p $ an, also die Verlustleistung

$ P=\Delta p\cdot Q $

Der Permeationskoeffizient $ C $ definiert das Permeationsverhalten einer Kombination Gas zu Material:

$ {\begin{aligned}C&=10^{8}\cdot {\frac {P\cdot x}{A\cdot \Delta p}}\\&=10^{8}\cdot {\frac {Q\cdot x}{A}}\\&=10^{8}\cdot {\frac {K}{\eta }}\cdot \Delta p\end{aligned}} $

mit

  • P – Verlustleistung in $ \mathrm {mbar} \cdot {\frac {\mathrm {l} }{\mathrm {s} }}=10^{2}\,\mathrm {Pa} \cdot 10^{-3}\,{\frac {\mathrm {m} ^{3}}{\mathrm {s} }}=0{,}1\,\mathrm {W} $ (W = Watt)
  • x – Länge des Permeationspfades in cm
  • A – Permeationsquerschnitt in cm2
  • $ \Delta p $ – Partialdruckdifferenz in bar.

Der Permeationskoeffizient $ C $ beträgt z. B. für

  • Helium durch Teflon: $ C=523\cdot 10^{-4}\,{\frac {\mathrm {m} ^{2}}{\mathrm {s} }}=523\,{\frac {\mathrm {mbar} \cdot {\tfrac {\mathrm {l} }{\mathrm {s} }}\cdot \mathrm {cm} }{\mathrm {cm} ^{2}\cdot \mathrm {bar} }} $
  • Wasserstoff durch Teflon: $ C=17{,}8\cdot 10^{-4}\,{\frac {\mathrm {m} ^{2}}{\mathrm {s} }} $
  • Helium durch Pyrex-Glas: $ C=0{,}09\cdot 10^{-4}\,{\frac {\mathrm {m} ^{2}}{\mathrm {s} }} $.

Aufgelöst nach der Verlustleistung ergibt sich:

$ \Leftrightarrow P=10^{-8}\cdot {\frac {C\cdot A\cdot \Delta p}{x}}. $

So ist z. B. die Verlustleistung von Helium durch eine Teflonmembrane mit einer Dicke $ x=1\,\mathrm {mm} $ und einer Fläche $ A=10\,\mathrm {cm} ^{2} $ bei einer Druckdifferenz $ \Delta p=1\,\mathrm {bar} $:

$ {\begin{aligned}P&=10^{-8}\cdot {\frac {523\,{\frac {\mathrm {mbar} \cdot {\tfrac {\mathrm {l} }{\mathrm {s} }}\cdot \mathrm {cm} }{\mathrm {cm} ^{2}\cdot \mathrm {bar} }}\cdot 10\,\mathrm {cm} ^{2}\cdot 1\,\mathrm {bar} }{1\,\mathrm {cm} }}\\&=5{,}23\cdot 10^{-5}\,\mathrm {mbar} \cdot {\frac {\mathrm {l} }{\mathrm {s} }}\\&=5{,}23\,\mu \mathrm {W} \end{aligned}} $

Literatur

  • Evaluation of gas diffusion through plastic materials used in experimental and sampling equipment. (Wat. Res. 27, No. 1, pp. 121–131, 1993)
  • Marr, Dr J. William. Leakage Testing Handbook, prepared for Liquid Propulsion. Section. Jet Propulsion Laboratory. National Aeronautics and Space Administration, Pasadena, CA, Contract NAS 7-396, June 1968; LCCN 68061892

Weblinks