In der Himmelsmechanik liegt eine Bahnresonanz (oder kurz Resonanz) vor, wenn zwei oder mehrere Himmelskörper periodisch wiederkehrenden gravitativen Einflüssen unterliegen. Ursachen von Bahnresonanzen sind die Umlaufzeiten der beteiligten Himmelskörper, deren Verhältnis zueinander durch niedrige natürliche Zahlen beschrieben werden kann, beispielsweise durch 2:1 oder 3:2.
Zwischen den Umlaufzeiten einiger unserer Planeten herrschen harmonikale Verhältnisse, beschrieben von Johannes Kepler in seiner „Harmonice mundi“.
Resonanzen können sowohl eine störende als auch eine stabilisierende Wirkung auf die Bahnen der Himmelskörper haben. Dies ist abhängig von der geometrischen Konstellation der beteiligten Himmelskörper. Bahnveränderungen durch periodische Störungen (siehe Resonanz), die stets an derselben Bahnposition ausgeübt werden, summieren sich im Falle einer instabilen, störenden Resonanz oder kompensieren sich gegenseitig im Fall einer stabilen Resonanz.
Im Falle störender Resonanzen führen die periodisch wiederkehrenden Störungen über längere Zeiträume zu dramatischen Änderungen der Bahnform. Häufigstes Resultat ist das Anwachsen der Exzentrizität, bis der Himmelskörper auf Kollisionskurs mit einem anderen Objekt gerät oder bei einer nahen Passage aus dem System herausgeschleudert wird.
Beispiele für störende Resonanzen sind die durch die Saturnmonde bedingten Teilungen der Saturnringe und die Kirkwoodlücken im Asteroidengürtel. Letzterer gilt als der wahrscheinlichste Herkunftsort der erdnahen Asteroiden.
Bei stabilisierenden Resonanzen verteilen sich die Orte der Bahnstörungen regelmäßig auf der Bahn des gestörten Objekts, sodass sich ihre Wirkungen einander aufheben.
Eine säkulare Resonanz liegt vor, wenn die Bewegung des Perihels oder die des Knotens zweier oder mehrerer Himmelskörper miteinander synchronisiert ist. Die Präzessionsfrequenz kleinerer Körper passt sich in diesem Fall der des störenden massereichen Körpers an.
Beim Kozai-Mechanismus handelt es sich um eine periodische und synchrone Änderung der Exzentrizität und Bahnneigung eines Himmelskörpers infolge von Resonanzeffekten.
Bei einer Laplace-Resonanz stehen die Umlaufzeiten dreier oder mehrerer Himmelskörper in einem niedrigen ganzzahligen Verhältnis zueinander. Die beiden einzigen bekannten Beispiele sind die drei inneren Galileischen Monde des Jupiter (Io, Europa, Ganymed) und die drei äußeren Planeten von Gliese 876 (Gliese 876 c, Gliese 876 b, Gliese 876 e). Die Umlauffrequenzen der drei Jupitermonde stehen in einer Resonanz von 4:2:1 – vier Io-Umläufe auf zwei Europa-Umläufe und einen Ganymed-Umlauf. In vergleichbarer Weise entfallen vier Umläufe von Gliese 876 c auf zwei von Gliese 876 b und einen von Gliese 876 e.