Version vom 2. Mai 2017, 08:06 Uhr von imported>Anton Sevarius
Die Atomphysik untersucht den Aufbau der Atome aus Atomkern und Elektronenhülle und die Wechselwirkungen der Atome und Ionen mit anderen Atomen oder Ionen, mit Festkörpern, mit elektromagnetischer Strahlung, mit elektrischen und magnetischen Feldern.
Gegenstand
Die Atomphysik ist ein Teilgebiet der Physik, das sich mit der Physik der Atomhülle und der in ihr ablaufenden Vorgänge befasst.
Sie untersucht u.a. die Verteilung der Elektronen auf die quantenmechanischen Energieniveaus und beschreibt damit die beobachteten Spektrallinien der Atome, den Aufbau des Periodensystems der Elemente und die Grundlagen für das Verständnis der chemischen Bindung.
Häufig wird die Atomphysik mit der Kernphysik verwechselt, die sich mit der Struktur des Atomkerns beschäftigt; die Atomphysik betrachtet den Atomkern als nicht weiter unterteilbaren Baustein.
Geschichte
Die Idee, dass alle Materie aus kleinsten Teilchen, den Atomen, zusammengesetzt sei, ist bereits in der Naturphilosophie der Antike zu finden, etwa bei Leukipp und seinem Schüler Demokrit. Empirisch untermauert wurde sie aber erst im 19. Jahrhundert durch Untersuchungen von John Dalton, Joseph Louis Gay-Lussac und Ludwig Boltzmann. Mit der Entwicklung der Spektroskopie kam die Frage nach einer inneren Struktur und Dynamik der Atome auf. Diese führte schließlich zur Entwicklung der Quantenmechanik, da die klassische Physik hier vollständig versagte.
Zur Geschichte der Atomphysik von 1919 bis 1965 siehe Werner Heisenberg: Der Teil und das Ganze: Gespräche im Umkreis der Atomphysik. Piper Verlag 2002 (8. Aufl.), ISBN 3492222978
Moderne Atomphysik
Das wichtigste Forschungsgebiet der heutigen Atomphysik ist die Quantenoptik.
Häufig wird inzwischen nur noch dieser Begriff genannt, um die oben genannte
Verwechslungsgefahr der Atom- mit der Kernphysik zu vermeiden. Die Quantenoptik beschäftigt sich unter anderem mit Präzisionsmessungen atomarer Energieniveaus, woraus sich Naturkonstanten mit hoher Genauigkeit bestimmen und fundamentale Theorien testen lassen. Durch Untersuchungen an exotischen Atomen lassen sich Fragestellungen der Kern- und Elementarteilchenphysik mit Methoden der Atomphysik angehen. Mit ultrakurzen Lichtpulsen versucht man die dynamischen Vorgänge in der Elektronenhülle direkt zu beobachten. In Ionenfallen können einzelne ionisierte Atome über lange Zeit gefangen und mit höchster Präzision untersucht werden. Die Entwicklung der Laserkühlung und der magneto-optischen Falle (MOT) haben Untersuchungen an ultrakalten Gasen und Bose-Einstein-Kondensaten, aber auch an extrem seltenen Isotopen möglich gemacht.
Die Atomphysik hat eine Vielzahl von Anwendungen hervorgebracht, darunter den Laser oder die Atomuhr. Untersuchungsmethoden, die ursprünglich für atomphysikalische Experimente entwickelt wurden, haben heute einen weit darüber hinausgehenden Anwendungsbereich gefunden, wie beispielsweise die Kernspinresonanz in der medizinischen Bildgebung, die Absorptions- und Emissionsspektroskopie in der chemischen Analytik, oder die Photoelektronenspektroskopie in der Materialwissenschaft.
Bedeutende Atomphysiker
- Niels Bohr (1885–1962), dänischer Physiker; Nobelpreis für Physik 1922 (Struktur der Atome und ihrer Strahlung), Bohrsches Atommodell, Korrespondenzprinzip, Prinzip der Komplementarität
- Steven Chu (* 1948), US-amerikanischer Physiker und Politiker; Nobelpreis für Physik 1997 (Beeinflussung von Atomen mittels Lasern, Laserkühlung), Atomfallen und Atomuhren, atomphysikalische Messungen
- Claude Cohen-Tannoudji (* 1933), französischer Physiker; Nobelpreis für Physik 1997 (Kühlen und Einfangen von Atomen mit Laserlicht), Quantenmechanik, Nuklear- und Molekularphysik
- Edward Uhler Condon (1902–1974), US-amerikanischer Physiker; Franck-Condon-Prinzip, Atomenergie, Radar
- Paul Dirac (1902–1984), britischer Physiker und Mitbegründer der Quantenphysik, Nobelpreis für Physik 1933 (Atomtheorie, mit Schrödinger); Dirac-Kamm, Fermi-Dirac-Statistik, Dirac-See, Dirac-Spinor, Dirac-Gleichung, Dirac-Funktion, Delta-Distribution, Dirac-Konstante, Diracmaß, Dirac-Hypothese, Postulat des Magnetischen Monopols
- Enrico Fermi (1901–1954), italienisch-amerikanischer Kernphysiker; Nobelpreis für Physik 1938, Quantenmechanik, Quantenstatistik, Fermi-Dirac-Statistik für Fermionen, Fermis Goldene Regel, Fermifläche, Fermi-Resonanz, Thomas-Fermi-Modell, erste kontrollierte nukleare Kettenreaktion, Atombombe, Fermigas, Fermium, Ferminiveau, Fermi-Probleme
- Robert Hofstadter (1915–1990), US-amerikanischer Physiker, Nobelpreis für Physik 1961 für Arbeiten zur Elektronenstreuung an Atomkernen, Bestimmung der Größe und Ladungsverteilung auf Protonen und Neutronen
- Robert Oppenheimer (1904–1967), US-amerikanischer theoretischer Physiker, wissenschaftlicher Leiter des Manhattan-Projekts zur Entwicklung der Atombombe
- Johannes Diderik van der Waals (1837–1923), niederländischer Physiker, Nobelpreis für Physik 1910, Anziehungskraft zwischen Atomen, Van-der-Waals-Kräfte, Van-der-Waals-Radius, Van-der-Waals-Gleichung
Literatur
- Karl Bechert, Christian Gerthsen, Arnold Flammersfeld: Atomphysik. de Gruyter, Berlin 1929 (134 S.).
- Wolfgang Karl Ernst Finkelnburg: Einführung in die Atomphysik. 2. Auflage. Springer, Berlin, Heidelberg 1941 (XII, 416 S.).
- Walter Weizel: Elektronen, Atome, Moleküle. Volk u. Wissen Verl., Berlin, Leipzig 1949 (187 S.).
- Theo Mayer-Kuckuk: Atomphysik: Eine Einführung; mit 6 Tabellen und 1 Spektraltafel. Teubner, Stuttgart 1977, ISBN 3-519-03042-X (233 S.).
- Niels Bohr: Atomphysik und menschliche Erkenntnis: Aufsätze und Vorträge aus den Jahren 1930 bis 1961. Vieweg, Braunschweig 1985, ISBN 3-528-08910-5 (X, 160 S.).
- Bernhard Bröcker: DTV-Atlas Atomphysik: Mit 116 Abbildungsseiten in Farbe. 6. Auflage. Deutscher Taschenbuch Verl., München 1997, ISBN 3-423-03009-7 (254 S.).
- Werner Heisenberg: Der Teil und das Ganze: Gespräche im Umkreis der Atomphysik. 2. Aufl., unveränd. Taschenbuchausg. Piper, München, Zürich 1998, ISBN 3-492-22297-8 (287 S.).
- Hermann Haken, Hans Christoph Wolf: Atom- und Quantenphysik: Einführung in die experimentellen und theoretischen Grundlagen. mit … 32 Tabellen 177 Aufgaben und vollständigen Lösungen. 8., aktualisierte und erw. Auflage. Springer, Berlin, Heidelberg 2004, ISBN 978-3-642-62142-0 (XX, 531 S.).
- Klaus Bethge, Michael Gruber, Thomas Stöhlker: Physik der Atome und Moleküle: Eine Einführung. 2., erw. und überarb. Auflage. WILEY-VCH, Weinheim 2004, ISBN 3-527-40463-5 (X, 427 S.).
Weblinks