Gefrierpunktserniedrigung (GPE) (oder auch Schmelzpunktserniedrigung (SPE) bzw. Schmelzpunktdepression (SPD)) bezeichnet das Phänomen, dass der Schmelzpunkt von Lösungen niedriger liegt als der der reinen Flüssigkeiten.
Die Gefrierpunktserniedrigung $ \Delta T $ ist für verdünnte Lösungen proportional zur Molalität b der Teilchen des gelösten Stoffes:
Dabei senkt sich der Gefrierpunkt pro Mol gelöstem Stoff pro Kilogramm Lösungsmittel um einen lösungsmittelspezifischen Wert. b ist dabei die Konzentration aller gelösten Teilchen des Stoffes in mol pro kg Lösungsmittel und nicht die Ausgangskonzentration des Stoffes. $ E_{n} $ ist die kryoskopische Konstante, die nur vom Lösungsmittel und nicht vom gelösten Stoff abhängt (bei Wasser ist dieser Wert 1,86 (K·kg)/mol). Sie lässt sich aus dem Raoultschen Gesetz und der Clausius-Clapeyronschen Gleichung ableiten zu
wobei
ist. Diese Beziehung gilt nur für stark verdünnte Lösungen (Konzentrationen < 0,1 mol/L), bei höher konzentrierten Lösungen ist die Aktivität der Ionen und des Wassers zu beachten. Sehr stark konzentrierte Lösungen haben auch einen Tripelpunkt, bei der die Salzlösung gefriert, vorher friert nur Wasser aus der Lösung aus, die Lösung wird immer weiter aufkonzentriert.
Da der Gefrierpunkt jeweils genau um 1,86 K sinkt, wenn man ein Mol Teilchen in einem Kilogramm Wasser löst, wird die dazugehörige Temperaturdifferenz auch molare Gefrierpunktserniedrigung genannt. Dieser Effekt ist unabhängig von der Art des gelösten Stoffs, es handelt sich um eine kolligative Eigenschaft.
Bei der Berechnung der Teilchenkonzentration ist zu beachten, dass Salze in wässriger Lösung dissoziieren. Kochsalz (NaCl) zerfällt z. B. in die Ionen Na+ und Cl−. Aus 1 mol Natriumchlorid entstehen also 2 mol Teilchen und dieser Wert ist für die Berechnung von $ b $ in oben angeführter Gleichung zu berücksichtigen.
Ebenso von der Molalität bzw. von der Konzentration der gelösten Stoffe abhängig ist der Siedepunkt. Man spricht von Molarer Siedepunkterhöhung. Ursache für diese Effekte ist eine Erniedrigung des chemischen Potentials der Lösung gegenüber dem reinen Lösungsmittel durch die Mischungsentropie.
Stoff | Schmelzpunkt in °C | Gefrierpunktserniedrigung in K kg / mol |
---|---|---|
Wasser | 0 | −1,86 |
Naphthalin | 80,2 | −6,80 |
Chloroform | −63,5 | −4,68 |
Benzol | 5,5 | −5,12 |
Campher | 179 | −39,7 |
Ethanol | −114,6 | −1,99 |
Cyclohexan | 6,4 | −20,2 |
Neben der Siedepunkterhöhung ist die Gefrierpunktserniedrigung eine weitere Folge, die mit dem verringerten Dampfdruck von Lösungen zusammenhängt.
Steht ein flüssiges Gemisch aus dem festen Stoff A und dem Lösungsmittel B im Gleichgewicht mit dem festen Stoff A, so ergibt sich der Ansatz $ \mu _{A,l}=\mu _{A,s} $ (mit $ \mu $ als Chemisches Potential). Es gilt weiterhin für die Differentiale $ \mathrm {d} \mu _{A,l}=\mathrm {d} \mu _{A,s} $.
Hierbei bezeichnet der Index $ l $ die flüssige Phase, während $ s $ die feste Phase kennzeichnet. Aus obiger Gleichung lassen sich die totalen Differentiale aufstellen:
wobei $ x $ der Molenbruch des gelösten Stoffes im Lösungsmittel ist. Arbeitet man bei konstantem Druck, nimmt die Gleichung die vereinfachte Form an:
Die Differenz der Entropie des festen und des flüssigen Zustandes ($ S_{A,l}-S_{A,s} $) entspricht der molaren Schmelzentropie der Substanz A. Diese Größe lässt sich als $ \Delta H_{\text{Schm.}}/T_{\text{Schm.}} $ beschreiben.
Als $ T_{\text{Schm.}} $ wird die Schmelzpunkttemperatur der reinen festen Phase bezeichnet. Setzt man diesen Zusammenhang in die obige Gleichung ein und integriert zwischen den Grenzen der Temperaturen $ T_{\text{Schm.}} $ und T bzw. 1 und dem Molenbruch $ x_{A} $, so ergibt sich:
mit $ x_{A}=1-x_{B} $ und $ \lim _{x_{B}\rightarrow 0}^{}\ln(1-x_{B})=-x_{B} $ und $ T_{\text{Schm.}}-T=\Delta T $ erhält man die Gleichung
Ersatz von $ x_{B} $ durch $ {\frac {n_{B}}{n}} $, wobei $ n\approx n_{A} $ und $ n_{B}={\frac {m_{B}}{M_{B}}} $ bzw. $ n_{A}={\frac {m_{A}}{M_{A}}} $ ist, führt bei Einführung von Molalitäten auf die folgenden Gleichungen (mit T · T$ _{s} $ ≈ T$ ^{2}_{s} $):
mit
Durch Umformen der Gleichung kann man die molare Masse des gelösten Stoffes aus der beobachteten Gefrierpunktserniedrigung bestimmen. Es gilt: