Archimedes-Zahl

Archimedes-Zahl

Physikalische Kennzahl
Name Archimedes-Zahl
Formelzeichen $ {\mathit {Ar}} $
Dimension dimensionslos
Definition $ {\mathit {Ar}}={\frac {\Delta \rho gL^{3}}{\rho \nu ^{2}}} $
$ \Delta \rho $ Dichtedifferenz des Körpers zum Fluid
$ g $ Erdbeschleunigung
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L charakteristische Länge des Körpers
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho Dichte des Fluids
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \nu kinematische Viskosität
Benannt nach Archimedes
Anwendungsbereich Auftrieb von Körpern

Die Archimedes-Zahl (Formelzeichen: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{Ar} ) ist eine dimensionslose Kennzahl, benannt nach dem antiken Gelehrten Archimedes. Sie kann als Verhältnis von Auftriebskraft zu Reibungskraft interpretiert werden[1] und ist definiert als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{align} \mathit{Ar} & = \frac{ \Delta\rho \, g \, L^3}{\rho \, \nu ^2} = \left(\frac {\rho_\mathrm K}{\rho} - 1\right) \cdot \frac{g \, L^3}{\nu^2}\\ & = \frac{\rho \, \Delta\rho \, g \, L^3}{ \eta^2} \end{align} .

Die eingehenden Größen sind

  • die Differenz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \Delta \rho = \rho_\mathrm K - \rho der Dichte $ \rho _{\mathrm {K} } $ des Körpers zur Dichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho des Fluids
  • die Fallbeschleunigung, auf der Erde Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): g\approx 9{,}81 \, \mathrm{\frac m {s^2}}
  • das aus der charakteristischen Länge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L des Körpers berechnete Volumen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L^3
  • die kinematische Viskosität $ \nu $ des Fluids, die sich von der dynamischen Viskosität Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \eta = \rho \cdot \nu durch den Faktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \rho unterscheidet.

Andere Definition

Eine alternative Definition der Archimedes-Zahl, welche als das Verhältnis von Auftriebskraft zu Trägheitskraft oder auch zwischen freier und erzwungener Konvektion gedeutet werden kann, ist identisch mit der Definition der Richardson-Zahl und lautet:[2][3]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{Ar} = \frac{\Delta T \, g \, L \, \beta}{{u_\infty}^2} = \frac{\mathit{Gr}}{\mathit{Re}^2} .

Dabei ist

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \beta der isobare Ausdehnungskoeffizient
  • $ \Delta T=T_{\infty }-T_{\text{Wand}} $ die treibende Temperaturdifferenz
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): u_\infty die Umgebungsgeschwindigkeit
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{Gr} : Grashof-Zahl
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathit{Re} : Reynolds-Zahl.

Einzelnachweise

  1. Repetitorium der technischen Thermodynamik: Achim Dittmann, Teubner-Studienbücher, Maschinenbau ISBN 3-519-06354-9
  2. Hanel, Bernd M., Raumlufströmung, Müller Verlag Heidelberg, 1994 S. 31 + 72
  3. VDI 6019 Blatt 1, Beuth Verlag Berlin, 2006 S. 37 ff