Ein bedeckungsveränderlicher Stern oder fotometrischer Doppelstern ist ein Doppelsternsystem, dessen Bahn so im Raum liegt, dass sich die beiden Sterne von der Erde aus gesehen periodisch verdecken.
Der Prototyp dieser Doppelsterne ist Algol (β Persei) im Sternbild Perseus, den die Araber im Mittelalter Teufelsstern nannten. Seine Veränderlichkeit wurde bereits in der Antike bemerkt und seine genaue Periodizität 1783/84 von John Goodricke in den Philosophical Transactions veröffentlicht.[1] Algols Helligkeit sinkt alle 2,87 Tage auf ein Drittel ab und zeigt in der halben Periode ein kleines Nebenminimum.
Aus der Lichtkurve, der Änderung der Helligkeit des nicht aufgelösten Doppelsternsystems während eines Umlaufs um den gemeinsamen Schwerpunkt, können die folgenden Parameter abgeleitet werden:
Aus diesen Daten kann auf die Flächenhelligkeiten der Sterne, die relativen Radien, die Bahnneigung, die Randverdunkelung, die Gravitationsverdunkelung, die Abweichung von der Kugelform durch Zentrifugalkräfte und der relative Abstand geschlossen werden. Wird die Beobachtung in einem fotometrischen System in mehreren Wellenlängen durchgeführt, kann auch auf die Oberflächentemperatur der Sterne geschlossen werden. Da Sterne nur einen begrenzten Bereich von Zustandsgrößen annehmen können, ist damit eine Bestimmung der absoluten Parameter wie Leuchtkraft und von geometrischen Parametern, z.B. Sternradien, möglich.
Wird der Verlauf der Radialgeschwindigkeit mittels des Dopplereffekts bestimmt, können auch die Massen der Sterne sowie die Bahnexzentrizität berechnet werden. Da nur bei bedeckungsveränderlichen Sternen die Bahnneigung eines optisch nicht in seine Komponenten auflösbaren Doppelsternsystems bestimmt werden kann, sind sie die wichtigste Quelle zur Bestimmung von Sternmassen.[2]
Es gibt zwei Hauptklassifizierungen für Bedeckungsveränderliche anhand der Lichtkurve und den geometrischen Verhältnissen:[3]
Neben Sternen können auch nichtleuchtende Begleiter eine Bedeckung verursachen. Dazu gehören Exoplaneten, Braune Zwerge und Staubscheiben wie im Fall Epsilon Aurigae. Weil diese Objekte nicht selbst leuchten, wird nur ein Rückgang der Helligkeit bei einem Bedeckungsveränderlichen pro Umlauf beobachtet. Planeten und braune Zwerge haben einen wesentlich kleineren Durchmesser als Sterne und deshalb ist die Helligkeitsänderung im Minimum gering. Die notwendige Messgenauigkeit lässt sich außerhalb der Erdatmosphäre mit wesentlich geringerem Instrumentenaufwand erreichen, speziell bei der gleichzeitigen und lange andauernden Überwachung einer großen Anzahl von Sternen zur Suche nach solchen Minima. So sind zum Beispiel die primären Ziele der Satellitenmissionen Kepler und COROT die Suche nach Exoplaneten mittels der Transitmethode.[4]
Daneben gibt es auch Dreifach-Bedeckungssysteme wie KOI-126. Hier umläuft in einer exzentrischen Bahn ein Stern ein enges Doppelsternsystem, wobei beide Sterne des engen Systems von dem ausgedehnten Begleiter bedeckt werden können. Die Lichtkurve erscheint unregelmäßig veränderlich aufgrund der Überlagerung der Minima.[5]
Der astrophysikalische Nutzen dieser Sternenklasse besteht in der Möglichkeit durch Messung der Lichtkurve auf die Bahndaten und physikalischen Zustandsgrößen der Sterne in dem Doppelsternsystem schließen zu können. So ist es mit Hilfe der neuen Generation von Großteleskopen möglich, bedeckungsveränderliche Sterne innerhalb der lokalen Gruppe zu finden und zu untersuchen. Durch die Ableitung der Leuchtkraft aus der Lichtkurve konnten die Entfernungen zu den Magellanschen Wolken, dem Andromedanebel, dem Dreiecksnebel und einigen Zwerggalaxien der lokalen Gruppe mit einer Genauigkeit von bis zu 6 % bestimmt werden.[6]
Bedeckungsveränderliche erlauben weiterhin die räumliche Auflösung von Strukturen auf oder nahe den Sternen des Doppelsternsystems. Dazu gehören:
Die Beobachtung einer Apsidendrehung der Bahn eines Bedeckungsveränderlichen ist relativ einfach, da in diesem Fall sich die Position des Haupt- und des Nebenminima relativ zueinander verändern. Da die Apsidendrehung auch abhängig von dem Aufbau der Sterne in dem Doppelsternsystem ist können Bedeckungsveränderliche auch zur Verifizierung von Modellen der inneren Struktur von Sternen genutzt werden.[7] Allerdings müssen dafür die Rotationsparameter und die Ausrichtung der Achsen bekannt sein wie im Falle DI Herculis.[8] Die Apsidendrehung kann auch zur Falsifikation von alternativen Gravitationstheorien genutzt werden. Mit diesen Hypothesen können die beobachteten Abweichungen der Rotationskurven von Galaxien, die dynamische Stabilität von Galaxienhaufen und die Gravitationslinsen durch Galaxien oder Cluster ebenso gut erklärt werden wie durch die Annahme von dunkler Materie. Die beobachteten Apsidendrehungen bei bedeckungsveränderlichen Sternen mit einer großen Bahnexzentrizität sollten in einigen Jahren von denen nach der Relativitätstheorie berechneten Werten abweichen und eine Unterscheidung ermöglichen.[9]
Da mit dem Abstand auch die Wahrscheinlichkeit einer gegenseitigen Bedeckung der Sterne abnimmt haben die meisten Bedeckungsveränderlichen kurze Perioden und daher eine kleine Bahnhalbachse im Verhältnis zu den Sternradien. Dadurch kann die Entwicklung der Sterne in Doppelsternsystemen von der von Einzelsternen abweichen aufgrund von Masseaustausch zwischen den Komponenten, beschleunigter Rotation und magnetischer Aktivität.
Änderungen in dem Gesamtdrehimpuls des Doppelsternsystems oder in der Verteilung des Drehimpuls sollten zu einer Verschiebung des Zeitpunkts minimaler Helligkeit führen. Da sich die Änderung mit jedem Umlauf kumuliert sind kleinste Abweichungen messbar und Beobachtungen zeigen, dass die Umlaufzeiten vieler bedeckungsveränderlicher Sterne nicht konstant sind.[10][11] Dabei sind folgende Phänomene bekannt, die eine Periodenänderung auslösen oder vortäuschen können:
Die meisten beobachteten Periodenänderungen bei bedeckungsveränderlichen Sternen werden dem Massenaustausch zwischen den Komponenten der Doppelsternsysteme zugeschrieben. Allerdings ist die Ursache vieler zyklischer Periodenänderungen nicht bekannt.
Läuft ein dritter Stern um das gemeinsame Massenzentrum und liegt seine Umlaufbahn dabei nicht in der Ebene des Bedeckungsveränderlichen so führt dies zu einer Präzession der Bahn des engen Doppelsternsystems. In der Folge verändert sich die Inklination der Bahn und damit auch die Tiefe der Minima. Insgesamt ist nur eine geringe Zahl an Dreifachsystemen bekannt mit einer veränderlichen Tiefe der Minima aufgrund des gravitativen Einflusses eines dritten Körpers. Zu diesen Sternen gehören Algol und HS Hydrae.[13]
Daneben kann auch die Normalhelligkeit schwanken aufgrund von Änderungen an der Oberfläche von einer oder beiden Komponenten des Bedeckungsveränderlichen. Zu den bekanntesten Beispielen gehören die RS-Canum-Venaticorum-Sterne. Auf der Oberfläche eines späten Riesen bilden sich Sternflecken mit einem Radius bis zu 20° und einer Temperatur, die circa 1500 K unterhalb der ungestörten Sternoberfläche liegt. Dies führt zu Einsenkungen in den Lichtkurven, die im Laufe von Monaten bis Jahren durch die Lichtkurve wandern. Bei Bedeckungsveränderlichen ist aufgrund der gebundenen Rotation die Rotationsperiode identisch mit der Bahnumlaufdauer. Das langsame Wandern der Sternflecken über die Oberfläche ist daher die Folge einer differentiellen Rotation in den späten Riesen.[14] Auch bedeckungsveränderliche BY-Draconis-Sterne zeigen eine vergleichbare Modulation der Lichtkurve. Bei dieser Sternklasse handelt es sich um späte Zwerge mit Sternflecken auf ihren Oberflächen.[15]
Wenn ein Planet seinem Zentralstern zu nahe kommt, heizt er sich so weit auf, dass Teile seiner Oberfläche verdampfen und die Materie das Gravitationsfeld des Super Mercury verlassen können. Wenn die Bahn des Planeten von der Erde aus gesehen vor dem Stern vorbeiführt, kann es zu einer veränderlichen Tiefe und Dauer des Bedeckungsminima kommen. Dabei ist die Umlaufdauer konstant wie im Fall von KIC 12557548, wo die Tiefe der Minima zwischen 0,2 % und 1,2 % schwankt. Die verdampfte Materie kondensiert in einer Entfernung vom Stern wieder zu Staub und absorbiert das Sternlicht sehr effektiv. Die Bedeckungslichtkurve ist asymmetrisch und wie bei allen Planetentransits fehlt das sekundäre Minimum.[16]