Brachistochrone

Brachistochrone

Datei:Brachistochronerutschbahn.jpg
Experiment: Welche Bahn ist die schnellste? (Ausstellung Elementa im Landesmuseum für Technik und Arbeit, Mannheim)
Datei:Tautochrone curve.gif
Tautochronie der Brachistochrone – von jedem Startpunkt auf der Kurve erreichen die Kugeln das „Ziel“ gleichzeitig.

Die Brachistochrone (gr. brachystos kürzeste, chronos Zeit) ist die Bahn zwischen einem Anfangs- und einem gleich hoch oder tiefer gelegenen Endpunkt, auf der ein sich reibungsfrei bewegender Massenpunkt unter dem Einfluss der Gravitationskraft am schnellsten zum Endpunkt gleitet. Der Tiefpunkt der Bahn kann tiefer liegen als der Endpunkt.

Der Körper gleitet auf einer solchen Bahn schneller zum Ziel als auf jeder anderen Bahn, beispielsweise auf einer geradlinigen, obwohl diese kürzer ist.

Gleichzeitig ist diese Kurve eine Tautochrone, d. h. von jedem Punkt der Kurve benötigt der Massepunkt die gleiche Zeit, um zum Tiefpunkt zu gelangen. Dieser Sachverhalt wird beim sogenannten Zykloidenpendel ausgenutzt, bei dem die Pendelmasse auf einer Tautochrone schwingt.

Form

Die Brachistochrone ist Teil einer Zykloide.

Geschichte

Johann I Bernoulli hat sich mit dem Problem des schnellsten Falles beschäftigt. Im Jahre 1696 fand er schließlich die Lösung in der Brachistochrone.[1] Heute sieht man dies oft als die Geburtsstunde der Variationsrechnung.

Christiaan Huygens veröffentlichte 1673 in seiner Abhandlung Horologium Oscillatorium eine ganggenaue Pendeluhr mit einem Zykloidenpendel, bei dem er sich die Tatsache zunutze machte, dass die Evolute der Zykloide selbst wieder eine Zykloide ist. Der Vorteil der Ganggenauigkeit wird jedoch durch die erhöhte Reibung wett- bzw. zunichtegemacht.

Funktion

Die Brachistochrone lässt sich in einer Parameterdarstellung beschreiben, das heißt, man kann ihre Punkte als Ortsvektor darstellen, der sich mit einem Parameter ändert. Als Funktion des Winkels Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varphi (im Bogenmaß), um den sich das Rad mit Radius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R beim Abrollen gedreht hat, sind die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x - und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): y -Koordinaten:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x = R \cdot (\varphi - \sin\varphi)\,,
$ y=R\cdot (-1+\cos \varphi )\,. $

Hilfreich für das Verstehen dieser Kurve ist: Der Radius mal dem Winkel „Berührungspunkt des Kreises-Kreismittelpunkt-Brachistochronenpunkt“ ist die bereits abgerollte Strecke.

Herleitung

Betrachten wir in der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x -Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): y -Ebene eine Kurve Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): y(x) , längs welcher der Massepunkt vom Start Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (x,y)=(0,0) mit fortlaufender Zeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t zum Ziel $ ({\overline {x}},{\overline {y}}) $ gleite.

Er hat die kinetische Energie

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_{\text{kin}} =\frac{1}{2}\, m \, v^2=\frac{1}{2}\, m \, ({v_x}^2+{v_y}^2)= \frac{1}{2} \, m \, \left(\left(\frac{\mathrm d x}{\mathrm d t}\right)^2 + \left(\frac{\mathrm d y}{\mathrm d x}\,\frac{\mathrm d x}{\mathrm d t}\right)^2 \right) = \frac{1}{2} \, m \, \left(\frac{\mathrm d x}{\mathrm d t}\right)^2 \left(1 + \left(\frac{\mathrm d y}{\mathrm d x}\right)^2 \right)

und die potentielle Energie

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E_{\text{pot}}=m\cdot g\cdot y(x)

Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): y die Höhe im Gravitationsfeld und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): g die Schwerebeschleunigung.

Gleitet der anfänglich ruhende Massepunkt vom Ursprung los, so ist längs seiner Bahn die Gesamtenergie erhalten und hat den anfänglichen Wert Null,

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 0 = \frac{1}{2} \, m \, \left(\frac{\mathrm d x}{\mathrm d t}\right)^2 \left(1 + \left(\frac{\mathrm d y}{\mathrm d x}\right)^2 \right) + m \cdot g \cdot y(x)

Dies kann nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tfrac{\mathrm d x}{\mathrm d t} aufgelöst werden. Die Ableitung der Umkehrfunktion, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t(x) , die angibt, zu welchem Zeitpunkt das Teilchen den Ort Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (x,y(x)) durchläuft, ist hierzu invers

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\mathrm d t}{\mathrm d x}=\sqrt{\frac{1+(\frac{\mathrm d y}{\mathrm d x})^2}{-2\,g\,y}}

Integrieren wir über den Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x -Bereich von 0 bis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \overline{x} , so ergibt sich die zu minimierende Laufzeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T als Funktional der Bahnkurve Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): y(x)

$ T[y]={\frac {1}{\sqrt {2\,g}}}\int _{0}^{\overline {x}}\,{\sqrt {\frac {1+({\frac {\mathrm {d} y}{\mathrm {d} x}})^{2}}{-y}}}\mathrm {d} x $

Um an die bei physikalischen Variationsproblemen üblichen Bezeichnungen anzuschließen, nennen wir die Integrationsvariable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t , bezeichnen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): -y mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): r und minimieren einfachheitshalber das mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sqrt{2\,g} multiplizierte Funktional. Wir minimieren also die Wirkung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): W[r]=\int\,\sqrt{\frac{1+(\frac{\mathrm d r}{\mathrm d t})^2}{r}} \mathrm d t

mit Lagrangefunktion

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mathcal{L}(t,r,v) =\sqrt{\frac{1+v^2}{r}}

Da die Lagrangefunktion nicht vom Integrationsparameter, der Zeit $ t $ abhängt, ist die nach dem Noether-Theorem zugehörige Energie / Hamilton-Funktion

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): H=v\partial_v\mathcal{L}-\mathcal{L}=-\frac{1}{\sqrt{r(1+v^2)}}

auf der Bahn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): r(t) erhalten, für die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): W[r] minimal wird. Die Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): r(t) erfüllt also mit einer positiven Konstanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R die Gleichung

$ \left(1+\left({\frac {\mathrm {d} r}{\mathrm {d} t}}\right)^{2}\right)\,r=2\,R $ oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \left(\frac{\mathrm d r}{\mathrm d t}\right)^2 - \frac{2\,R}{r} = -1

wie ein Teilchen, das im Keplerpotential Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \propto -1/r senkrecht aus der Gipfelhöhe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 2\,R fällt.

Statt diese Gleichung mit getrennten Veränderlichen nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \tfrac{\mathrm d r}{\mathrm d t} aufzulösen und zu integrieren, bestätigt man einfach, dass

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t(\varphi) = R\,(\varphi-\sin\varphi)\,,\ r(\varphi)=R\,(1-\cos\varphi)

eine parametrische Lösung dieser Gleichung ist, wobei man

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{\mathrm d r}{\mathrm d t}=\frac{\frac{\mathrm d r}{\mathrm d \varphi}} {\frac{\mathrm d t}{\mathrm d \varphi}}=\frac{\sin\varphi}{1-\cos\varphi}

ausnutzt. Also ist die gesuchte Bahn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (x,y(x)) parametrisch gegeben durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \begin{pmatrix} x(\varphi)\\y(\varphi) \end{pmatrix} =R\, \begin{pmatrix} \varphi-\sin\varphi\\ \cos\varphi -1 \end{pmatrix}= R\, \begin{pmatrix} \varphi\\ -1 \end{pmatrix}+ \begin{pmatrix} \cos \varphi & -\sin\varphi\\ \sin\varphi & \cos \varphi \end{pmatrix} \begin{pmatrix} 0\\ R \end{pmatrix}

Dabei wird an der letzten Zerlegung deutlich, dass die Bahn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): y(x) sich aus den Ortsvektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R\,(\varphi,-1) der Nabe eines Rades mit Radius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R zusammensetzt, das unter der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x -Achse rollt plus dem Speichenvektor, der anfänglich nach oben zeigt und mit dem Winkel $ \varphi $ gedreht wird. Die Kurve ist die Bahn eines Randpunktes eines rollenden Rades.

Spezielle Eigenschaften der Bahn

  • Die Bahn ist unabhängig von der Masse und der Gewichtskraft des Körpers, also unabhängig von der Größe der Erdbeschleunigung.
  • Ebenso ändert eine rollende Kugel, die Rotationsenergie aufnimmt, nichts an der Idealkurve.
  • Die Tangente im Anfangspunkt ist senkrecht.
  • Haben zwei Brachistochronen dasselbe Gefälle zwischen Anfangs- und Endpunkt, sind sie ähnlich.
  • Ist das Gefälle nicht kleiner als 2/π (63,66 %), so ist der Endpunkt der tiefste Punkt der Kurve, bei kleinerem Gefälle liegt der Tiefpunkt zwischen Anfangs- und Endpunkt.
  • Ist das Gefälle 0, also liegen Anfangs- und Endpunkt auf derselben Höhe, ist die Kurve symmetrisch.

Bilder

Weblinks

Commons: Brachistochrone – Sammlung von Bildern, Videos und Audiodateien

Belege

  1. Acta eruditorum. (1696). Siehe Istvan Szabó: Geschichte der mechanischen Prinzipien. Dritte korrigierte und erweiterte Auflage 1987, S. 110, ISBN 978-3-0348-9980-2.