Jeans-Kriterium

Jeans-Kriterium

Das Jeans-Kriterium der Sternentstehung (nach James Jeans), auch Jeanssches Kriterium, besagt, dass eine kosmische Gaswolke kollabiert und aus ihr letztlich ein Stern entstehen kann, wenn ihre Masse größer als die Jeans-Masse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M_{\mathrm{Jeans}} ist. Handelt es sich bei der Gaswolke um eine protoplanetare Scheibe, so kann das Jeans-Kriterium auch für die Entstehung von Gasplaneten herangezogen werden.

Unter irdischen Bedingungen breiten sich Gase aufgrund der kinetischen Energie der Moleküle und ihrer damit verbundenen Kollisionen in dem zur Verfügung stehenden Raum gleichmäßig aus. Im freien Weltall dagegen werden größere Ansammlungen von Gasen durch ihre Schwerkraft zusammengehalten und sind deswegen räumlich begrenzt. Nach Überschreiten der Jeans-Masse zieht sich die Wolke immer weiter zusammen, bis ein neuer Gleichgewichtszustand erreicht wird (Sternentstehung).

Berechnung bzw. Abschätzung der Jeans-Masse

Die Jeans-Masse als minimale Grenzmasse lässt sich abschätzen zu:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M_{\mathrm{Jeans}} =\alpha \cdot \sqrt{\frac{1}{\rho} \cdot \left( \frac{k T}{G \mu} \right)^3 }

mit

  • einem numerischen Vorfaktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha , der von der Abschätzung und ihrer Genauigkeit abhängt
  • weiteren Variablen, die im Folgenden erläutert werden.
Kräfte bzw. Drücke in einer kosmischen Gaswolke

Es wird eine kugelförmige Gaswolke der Masse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M , der homogenen Dichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \textstyle\rho = M/(\frac{4}{3} \pi R^3) , dem daraus zu berechnenden Radius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): R und der Temperatur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T angenommen. Auf die Gaswolke wirken keine äußeren Kräfte, sie rotiert nicht, und das Gas verhält sich wie ein ideales Gas.

Die Wolke beginnt zu kollabieren, falls die zusammenziehenden Gravitationskräfte größer sind als die stabilisierende Kraft des Gasdruckes (Jeans-Kriterium). Dieser Zustand ist erreicht, wenn die Masse der Gaswolke bei einer bestimmten Dichte und Temperatur die zugehörige Jeans-Masse überschreitet. Sie kann sowohl über das Gleichgewicht der Drücke als auch über das der Energien ermittelt werden.

Über den Gleichgewichtsdruck

Bei Gleichgewicht der Drücke im Zentrum der Wolke gilt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): |p_{\mathrm{Gas}}| = |p_{\mathrm{grav}}|

Aus der idealen Gasgleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): pV = nkT \iff p = \frac{\rho}{\mu}kT

und dem Gravitationsdruck im Inneren einer Kugel folgt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \implies \frac{\rho}{\mu}kT = \frac{3G M^2}{8\pi R^4}

mit

  • dem Druck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p
  • dem Volumen $ V $
  • der Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n der Gasmoleküle
  • der Boltzmann-Konstanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k
  • der absoluten Temperatur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T
  • der Masse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \mu des einzelnen Gasmoleküls
  • der Gravitationskonstanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G .

Daraus ergibt sich:[1]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \implies M_{\mathrm{Jeans}} = \sqrt{\frac{6}{\pi}} \cdot \sqrt{\frac{1}{\rho} \cdot \left( \frac{k T}{G \mu} \right)^3} .

Der numerische Vorfaktor ist hier $ \alpha ={\sqrt {\frac {6}{\pi }}}\approx 1{,}38 $.

Über das Energiegleichgewicht

Bei dem Ansatz über das Energiegleichgewicht steht die kinetische Energie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \textstyle E_\mathrm{kin} = \frac{3}{2} nkT nach Verwendung des Virialsatzes zur gravitativen Bindungsenergie der Gaswolke wie folgt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 2 E_{\mathrm{kin}} = E_{\mathrm{grav}}

bzw. mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n = \tfrac{M}{\mu} :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \iff 3 \frac{M}{\mu}kT = \frac{3G M^2}{5R}

Die Auflösung nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): M führt zu folgender Jeans-Masse:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \implies M_{\mathrm{Jeans}} = \sqrt{\frac{3 \cdot 5^3}{4 \pi}} \cdot \sqrt{\frac{1}{\rho} \cdot \left(\frac{k T}{G \mu}\right)^3}

Also ein numerischer Vorfaktor $ \alpha \approx 5{,}46 $.

Eine andere Ableitung von Jeans,[2] ausgehend vom Durchmesser und Dichte der Wolke sowie der Schallgeschwindigkeit eines idealen Gases, ergibt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha \approx 6{,}27 .

Einfluss von Dichte und Temperatur

Wie sich aus den Formeln ablesen lässt, ist die Jeans-Masse für kalte Gaswolken kleiner als für heiße, dafür aber bei niedrigen Gasdichten höher. Das nebenstehende Diagramm gibt diese Abhängigkeit verschiedener Jeans-Massen von der Dichte und der Temperatur wieder. Die Jeans-Masse ist als Vielfaches der Sonnenmasse angegeben, als Gas wurde einatomiges Wasserstoffgas als häufigstes Element im Universum gewählt (Masse pro Atom: µ ≈ 1.67e-27 kg). Die Berechnung erfolgte wie oben ausgeführt über das Druckgleichgewicht; die Berechnung über das Energiegleichgewicht würde zu einem leicht unterschiedlichen Ergebnis führen, allerdings sind beide Ansätze stark vereinfachte Näherungen.

Ablese-Beispiel: Eine Wolke aus einatomigem Wasserstoffgas von 10 Sonnenmassen und einer Dichte von 10−17kg ⋅m−3 kollabiert bei einer Temperatur von ≤ 10 K. Zur Veranschaulichung hätte eine solche Wolke etwa 6000 Atome pro cm³ und einen Durchmesser von 1,65 Lichtjahren (1.56e13 Kilometer).

Literatur und Quellen

  • Bradley W. Carroll, Dale A. Ostlie: An introduction to Modern Astrophysics. 1996, ISBN 0-321-21030-1, S. 449.
  • Hermann Kolanoski: Einführung in die Astroteilchenphysik. (PDF; 13,8 MB) Abgerufen am 21. Juli 2013.
  • Malcolm S. Longair: Galaxy Formation. Springer, Berlin, 1998, ISBN 3-540-63785-0. (Astronomy and Astrophysics Library).
  • Roman Sexl, Hannelore Sexl: Weiße Zwerge – Schwarze Löcher. Einführung in die relativistische Astrophysik. 2. erweiterte Auflage. Vieweg Verlag, Braunschweig 1999, ISBN 3-528-17214-2 (Vieweg-Studium – Grundkurs Physik).
  • Albrecht Unsöld, Bodo Baschek: Der neue Kosmos. 4. völlig neubearbeitete Auflage. Springer, Berlin 1988, ISBN 3-540-18171-7.

Einzelnachweise

  1. Siehe das Skript von Hermann Kolanoski: Einführung in die Astroteilchenphysik. HU Berlin, WS 2009/2010 in den Literaturangaben
  2. Siehe das Skript von Kolanoski in der Literatur