Die Magnetresonanztomographie, abgekürzt MRT oder MR (als Tomographie von {{Modul:Vorlage:lang}} Modul:ISO15924:97: attempt to index field 'wikibase' (a nil value) und {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value)), ist ein bildgebendes Verfahren, das vor allem in der medizinischen Diagnostik zur Darstellung von Struktur und Funktion der Gewebe und Organe im Körper eingesetzt wird. Es basiert physikalisch auf den Prinzipien der Kernspinresonanz (englisch Nuclear Magnetic Resonance, NMR), insbesondere der Feldgradienten-NMR, und wird daher auch als Kernspintomographie bezeichnet (umgangssprachlich gelegentlich zu Kernspin verkürzt). Die ebenfalls zu findende Abkürzung MRI stammt von der englischen Bezeichnung {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value).
Mit der MRT können Schnittbilder des menschlichen (oder tierischen) Körpers erzeugt werden, die eine Beurteilung der Organe und vieler krankhafter Organveränderungen erlauben. Sie basiert auf – in einem Magnetresonanztomographiesystem (Kurzform: Kernspintomograph, MRT-Gerät) erzeugten – sehr starken Magnetfeldern sowie magnetischen Wechselfeldern im Radiofrequenzbereich, mit denen bestimmte Atomkerne (meist die Wasserstoffkerne/Protonen) im Körper resonant angeregt werden, wodurch in einem Empfängerstromkreis ein elektrisches Signal induziert wird. Da somit das zu beobachtende Objekt „selbst strahlt“, unterliegt die MRT nicht dem physikalischen Gesetz zum Auflösungsvermögen optischer Instrumente, nach dem die Wellenlänge der verwendeten Strahlung umso kleiner sein muss, je höher die geforderte Auflösung ist. In der MRT können mit Wellenlängen im Meterbereich (energiearme Radiowellen) Objektpunkte im Submillimeterbereich aufgelöst werden. Die Helligkeit unterschiedlicher Gewebetypen im Bild wird durch deren Relaxationszeiten und den Gehalt von Wasserstoff-Atomen (Protonendichte) bestimmt.[1] Welcher dieser Parameter den Bildkontrast dominiert, wird durch die Wahl der Pulssequenz beeinflusst.
Im Gerät wird keine belastende Röntgenstrahlung oder andere ionisierende Strahlung erzeugt oder genutzt. Allerdings sind die Wirkungen der magnetischen Wechselfelder auf lebendes Gewebe nicht vollständig erforscht.
Zahlreiche spezielle MRT-Verfahren wurden entwickelt, um außer Lage und Form der Organe auch Informationen über ihre Mikrostruktur und Funktion (besonders ihre Durchblutung) darstellen zu können, zum Beispiel:
Nach der Bauform unterscheidet man geschlossene MRT-Systeme mit kurzem oder langem Tunnel und offene MRT-Systeme (oMRT) mit C-Arm oder seitlich geöffnetem Tunnel. Geschlossene Tunnelsysteme liefern vergleichsweise bessere Bilddaten, offene MRT-Systeme ermöglichen dagegen den Zugang zum Patienten unter MRT-Kontrolle.
Ein weiteres Unterscheidungskriterium ist die Art der Magnetfelderzeugung. Für schwache magnetische Felder bis ca. 0,5 Tesla Flussdichte werden Permanentmagnete oder konventionelle Elektromagnete verwendet, für stärkere Felder dagegen supraleitende Magnetspulen.
Die 1945/46 sowohl von Felix Bloch als auch von Edward M. Purcell beschriebene spezifische magnetische Resonanz von Atomkernen mit magnetischem Dipolmoment war die Grundlage für das seit den 1950er Jahren auch in der Medizin verwendete Verfahren der Magnetresonanzspektroskopie.[2] Die Magnetresonanztomographie wurde als bildgebende Methode von Paul C. Lauterbur im September 1971 erfunden; er veröffentlichte die Theorie zur Bildgebung im März 1973.[3][4] Die Hauptparameter, die zum Bildkontrast beitragen (Unterschiede in den Relaxationszeiten von Geweben), waren bereits gut 20 Jahre vorher von Erik Odeblad beschrieben worden.[5]
Lauterbur hatte zwei grundlegende Ideen, die eine Bildgebung auf der Grundlage der Kernspinresonanz erst möglich machten. Erstens gelang es ihm mit Feldgradienten-NMR, d. h. mit der Einführung von magnetischen Gradientenfeldern in das konventionelle NMR-Experiment, die NMR-Signale bestimmten räumlichen Bereichen einer ausgedehnten Probe zuzuordnen (Ortskodierung). Zweitens schlug er ein Verfahren vor, bei dem durch Rotation des ortskodierenden Magnetfeldgradienten in aufeinanderfolgenden Experimenten unterschiedliche Ortskodierungen (Projektionen) des Untersuchungsobjektes erzielt wurden, aus denen anschließend mit Hilfe der gefilterten Rückprojektion (englisch filtered backprojection) ein Abbild des Untersuchungsobjektes errechnet werden konnte. Sein 1973 publiziertes Ergebnis zeigt eine zweidimensionale Abbildung von zwei mit normalem Wasser gefüllten Röhrchen in einer Umgebung aus schwerem Wasser.
Für eine praktische Nutzung dieser Entdeckung waren auch spezielle apparative Neuerungen erforderlich. Die Firma Bruker in Karlsruhe, hatte Anfang der 1960er Jahre in einer Gruppe um die Physiker Bertold Knüttel und Manfred Holz „quarzgesteuerte“ NMR-Impulsspektrometer[6] entwickelt, die z. B. von Peter Mansfield für grundlegende Experimente benutzt werden konnten. Mansfield entwickelte dann ab 1974 mathematische Verfahren, um die Signale schnell in Bildinformationen zu wandeln, sowie Techniken zur schichtselektiven Anregung. Weiterhin führte er 1977 die Verwendung extrem schneller Umschaltung der Gradienten ein (EPI = {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value)).[7] Dadurch wurde eine Bildgewinnung in deutlich unter einer Sekunde möglich („Schnappschuss-Technik“), die jedoch bis heute mit Abstrichen in der Bildqualität erkauft werden muss. Mansfield ist auch die Einführung magnetisch abgeschirmter Gradientenspulen zu verdanken. In seinen letzten aktiven Jahren suchte er nach Lösungen, um die erhebliche Lärmbelastung für die Patienten durch die extrem schnelle Gradientenumschaltung zu reduzieren.
Weitere für die breite klinische Nutzung der Magnetresonanztomographie (MRT) wichtige Beiträge stammen aus deutschen Forschungslaboren. In Freiburg entwickelten Jürgen Hennig und Mitarbeiter zu Anfang der 1980er Jahre eine Variante der Spin-Echo MRT, die heute unter den Abkürzungen RARE ({{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value))[8], FSE ({{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value)) oder TSE ({{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value)) bekannt ist. Sie findet wegen ihrer Sensitivität in Bezug auf pathologische Gewebestrukturen und ihrer messtechnischen Effizienz allgemeine Verwendung. 1985 gelang Axel Haase, Jens Frahm und Dieter Matthaei in Göttingen mit der Erfindung des Schnellbild-Verfahrens FLASH[9] ein grundsätzlicher Durchbruch in der MRT. Die FLASH-Technik reduzierte die damaligen Messzeiten um bis zu zwei Größenordnungen (Faktor 100) ohne substanzielle Verluste an Bildqualität. Das Verfahren ermöglicht zudem ununterbrochene, sequentielle Messungen im dynamischen Gleichgewicht sowie völlig neue klinische Untersuchungen wie beispielsweise Aufnahmen aus dem Bauchraum bei angehaltenem Atem, dynamische Aufnahmen von mit dem EKG synchronisierten Herzfilmen, dreidimensionale Aufnahmen komplexer anatomischer Strukturen, Gefäßdarstellungen mit der MR-Angiographie und heute auch funktionelle Kartierungen des Cortex mit besonders hoher Auflösung. Damit war ab Mitte der 1980er Jahre der Weg frei für eine breite, vor allem klinische Anwendung der MRT in der medizinischen Diagnostik.
Umstritten ist der Beitrag von Raymond Damadian, der 1977 das erste „Kernspin-Bild“ eines Menschen vorgestellt[10] und 1974 ein US-Patent zur Anwendung der NMR für die Krebsdiagnostik angemeldet hatte. Das Patent beschrieb zwar keine Methode zur Bildgebung, sondern nur eine Punktmessung, dennoch erstritt Damadian mit einem anderen Patent (Mehrschicht-Mehrwinkel-Messungen z. B. für MRT-Untersuchungen der Wirbelsäule) über 100 Millionen US-Dollar von den verschiedenen Herstellern von Magnetresonanztomographen. Sein ursprünglicher NMR-Scanner, der keine Bilder erzeugte, wurde klinisch nie eingesetzt, und auch seine damit angeblich gefundene Krebsnachweismethode ist nicht frei von Zweifeln. Sie beruht auf Differenzen in den NMR-Relaxationszeiten von gesundem Gewebe und Tumor-Gewebe. Diese von Damadian bereits 1971 publizierte Beobachtung (mittels der Magnetresonanzspektroskopie) wurde zwar grundsätzlich bestätigt, musste allerdings später dahin gehend relativiert werden, dass die Unterschiede nicht durchgehend zutreffen. Abweichende Relaxationszeiten des Gewebes sind weder notwendig noch hinreichend für das Vorhandensein von Tumorgewebe beim Probanden. Damadian wurde bei der Verleihung des Nobelpreises für die bildgebende Kernspinresonanz 2003 nicht berücksichtigt,[11] wogegen er öffentlich heftig protestierte.
Dieser Abschnitt beschreibt das Prinzip der MRT stark vereinfacht und nicht vollständig. Für eine präzisere Beschreibung siehe die nächsten Abschnitte.
Das Verfahren beruht darauf, dass die Atomkerne im untersuchten Gewebe durch eine Kombination von statischen und hochfrequenten magnetischen Feldern gezielt phasensynchron zu einer bestimmten Bewegung angeregt werden und dann ein messbares Signal in Form einer Wechselspannung abgeben, bis die Bewegung abgeklungen ist. Diese Bewegung heißt Larmorpräzession und ist mechanisch analog an einem Spielzeugkreisel zu beobachten, wenn seine Drehachse nicht senkrecht steht, sondern um die Senkrechte herum eine Präzession vollführt (s. Abb. rechts). Sowohl zur Anregung als auch zur Beobachtung des Signals ist eine Resonanzbedingung zu erfüllen, mit deren Hilfe es mittels inhomogener statischer Magnetfelder möglich ist, den Ort der präzedierenden Kerne zu ermitteln.
Einige Atomkerne (wie etwa die Wasserstoffkerne) in den Molekülen des zu untersuchenden Gewebes besitzen einen Eigendrehimpuls (Kernspin) und sind dadurch magnetisch. Diese Kerne erzeugen nach dem Anlegen eines starken statischen Magnetfeldes eine kleine longitudinale Magnetisierung in Richtung des statischen Feldes (Paramagnetismus). Durch ein kurzzeitig angelegtes zusätzliches hochfrequentes Wechselfeld im Radiofrequenzbereich lässt sich diese Magnetisierung aus der Richtung des statischen Feldes auslenken (kippen), also teilweise oder ganz (Sättigung) in eine transversale Magnetisierung umwandeln. Die transversale Magnetisierung beginnt sofort um die Feldrichtung des statischen Magnetfeldes zu präzedieren, d. h. die Magnetisierungsrichtung rotiert (siehe Abbildung zur Präzession). Diese Präzessionsbewegung der Gewebemagnetisierung induziert wie die Rotation des Magneten im Dynamo in einer Spule (Empfängerstromkreis) eine elektrische Spannung und kann damit nachgewiesen werden. Ihre Amplitude ist proportional zur transversalen Magnetisierung.
Nach Abschalten des hochfrequenten Wechselfeldes nimmt die transversale Magnetisierung (wieder) ab, die Spins richten sich also wieder parallel zum statischen Magnetfeld aus. Für diese sogenannte Relaxation benötigen sie eine charakteristische Abklingzeit. Diese ist von der chemischen Verbindung und der molekularen Umgebung abhängig, in der sich der präzedierende Wasserstoffkern befindet. Daher unterscheiden sich die verschiedenen Gewebearten charakteristisch in ihrem Signal, was zu verschiedenen Signalstärken (Helligkeiten) im resultierenden Bild führt.
Die physikalische Grundlage der Magnetresonanztomographie (MRT) bildet die Kernspinresonanz (engl. {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value), NMR). Hier nutzt man die Tatsache, dass die Atomkerne von Wasserstoff (Protonen) einen Eigendrehimpuls (Spin) und damit verknüpft ein magnetisches Dipolmoment besitzen. Auch manche anderen Atomkerne haben Spin und erhalten dadurch ein magnetisches Moment. (Ein Atomkern kann vom Standpunkt der klassischen Physik aus vereinfacht als ein Kugelkreisel mit einem Drehimpuls und einem magnetischen Dipolmoment angesehen werden, wobei die Ursache seines Drehimpulses klassisch jedoch nicht korrekt beschrieben werden kann.)
Wird ein solcher Kern in ein statisches magnetisches Feld $ {\vec {B}}_{0} $ gebracht, so ist seine Energie am niedrigsten, wenn das magnetische Dipolmoment zum Feld $ {\vec {B}}_{0} $ parallel ausgerichtet ist. Auf alle anderen Atomkerne wirkt ein Drehmoment, das die Richtung des magnetischen Moments in die Richtung des Magnetfeldes zu drehen versucht. Wegen des Eigendrehimpulses des Atomkerns und der Drehimpulserhaltung resultiert daraus die Präzessionsbewegung, d. h. die Drehimpulsorientierung des Kerns dreht sich ohne Änderung des Anstellwinkels um die Richtung des angelegten Magnetfeldes.
Durch die thermische Energie der Kerne bei normalen Temperaturen sind die Dipolmomente fast vollständig zufällig (isotrop) ausgerichtet; es gibt nur einen sehr kleinen Überschuss von Atomkernen (entsprechend der Boltzmann-Verteilung), deren Dipolmomente in Richtung des statischen Magnetfeldes ausgerichtet sind. Nur dieser geringe Überschuss bewirkt die außen messbare Magnetisierung $ {\vec {M}} $ in Richtung des äußeren statischen Feldes (die Longitudinalmagnetisierung in Longitudinalrichtung).[12]
Die Präzessionsbewegung der Kernspins erfolgt mit der Larmorfrequenz. Sie hängt von der Stärke des äußeren Magnetfeldes und vom betrachteten Kern ab, für Protonen bei 1 Tesla ist sie 42,58 MHz, also im UKW-Radiowellenbereich. Ein hochfrequentes Zusatzfeld, das orthogonal zum statischen Magnetfeld $ {\vec {B}}_{0} $, also in der Transversalebene, schwingt und dessen Frequenz mit der Larmorfrequenz in Resonanz ist, lenkt alle Kerne phasensynchron aus ihrer aktuellen Lage zum statischen Feld aus. Die makroskopische Magnetisierung wird aus der Richtung des statischen Feldes gekippt, es entsteht eine Transversalmagnetisierung, die bei richtiger Einwirkungsdauer des Wechselfelds maximal gerade gleich der ursprünglichen Longitudinalmagnetisierung sein kann (Sättigung).
In einer Messspule wird durch die rotierende Transversalmagnetisierung eine Wechselspannung induziert. Ihre Frequenz ist die Larmorfrequenz, die bei einem statischen Gradientenfeld vom Ort abhängt, ihre Amplitude gibt die Stärke der Transversalmagnetisierung an, die ihrerseits von der genauen Folge (Sequenz) von Pulsen, vom Ort und vom Gewebetyp abhängig ist.
Das Ziel der MR-Tomographie ist die Erzeugung von Schichtbildern (beliebiger Orientierung) der räumlichen Verteilung der Transversalmagnetisierung $ {\vec {M}}_{T}(x,y,z) $.
Ist durch ein magnetisches Wechselfeld der richtigen Frequenz, Stärke und Dauer die Magnetisierung so aus der Longitudinalrichtung (z-Richtung) gekippt worden, dass sie in der xy-Ebene präzediert, hat die longitudinale Magnetisierung zunächst den Wert Null. Stellt man dann das Wechselfeld ab, beginnt sich der Gleichgewichtszustand mit ausschließlich longitudinaler Magnetisierung, also geringerer Energie, wieder aufzubauen. Ursache dieser Spin-Gitter-Relaxation ist die Einwirkung fluktuierender Störfelder auf die Momente der einzelnen Kerne, die durch benachbarte Atome hervorgerufen werden, die ihrerseits im thermischen Gleichgewicht mit der weiteren Umgebung stehen, die aus historischen Gründen als „Gitter“ bezeichnet wird. D. h., die Magnetisierung richtet sich wieder entlang des statischen Feldes $ B_{0} $ aus, die Energie geht von den Kernen über die Atome ins Gitter. Diese Ausrichtung erfolgt exponentiell:
wobei $ M_{0} $ die Stärke der Magnetisierung in Richtung von $ B_{0} $ im Gleichgewichtszustand ist. Die Konstante $ c $ gibt an, in welchem Zustand außerhalb des Gleichgewichts sich das System zu Beginn des Relaxationsprozesses befindet (z. B. $ c=1 $: Sättigung, $ c=2 $: Inversion). Die Zeit bis die z-Komponente ca. 63 % ihres Ausgangswertes wieder erreicht hat, nennt man Spin-Gitter-Relaxationszeit oder auch $ T_{1} $-Zeit.
Die $ T_{1} $-Zeiten in reinen, niedrigviskosen Flüssigkeiten wie z. B. Wasser liegen meist im Bereich von einigen Sekunden. Flüssigkeiten mit höherer Viskosität (z. B. Öle) oder Wasser in strukturierten Systemen wie z. B. Gelen, porösen Materialien oder Gewebe weisen im Allgemeinen kürzere $ T_{1} $-Zeiten auf. In hoch geordneten Festkörpern werden hingegen sehr lange Relaxationszeiten gefunden, die eventuell im Bereich von Stunden liegen können. Solche Materialien spielen jedoch wegen der kurzen $ T_{2} $-Zeiten in Festkörpern für die konventionelle Magnetresonanz-Tomographie keine Rolle. Typische Werte für $ T_{1} $ im menschlichen Gewebe liegen zwischen einigen Sekunden für Körperflüssigkeiten wie Blut oder Hirnwasser (Liquor) und ca. 100 ms für Körperfett (beispielsweise beträgt die $ T_{1} $-Zeit von Liquor bei 1,5 Tesla etwa 4 Sekunden, die $ T_{1} $-Zeit der grauen Hirnsubstanz ungefähr 1,2 Sekunden[13]).
Die Quermagnetisierung eines Spin-Ensembles zerfällt nun, ähnlich wie die $ M_{z} $-Komponente steigt, durch Wechselwirkung mit benachbarten Atomen. Hier ist es allerdings die sog. Spin-Spin-Wechselwirkung, die für die Dephasierung verantwortlich ist. Der Zerfall lässt sich wieder durch eine Exponentialfunktion darstellen, jedoch mit einer anderen Zeitkonstante $ T_{2} $:
Oft nimmt die Quermagnetisierung in der xy-Ebene viel schneller ab, als durch die Spin-Spin-Wechselwirkung erklärbar ist. Die Ursache liegt darin, dass bei einer MR-Aufnahme über ein Volumenelement gemittelt wird, in dem das äußere Magnetfeld nicht konstant (sondern inhomogen) ist. Nach Wegnahme des HF-Signals verschieben sich die Phasen der Präzessionsbewegung der Kerne untereinander, und die xy-Komponenten der einzelnen Kernspins laufen auseinander.
Zum besseren Verständnis wird hier das Prinzip der grundlegenden (1950 von Erwin Hahn erfundenen) Spinecho-Sequenz kurz skizziert. Eine „Sequenz“ (auch „Pulssequenz“) ist in diesem Zusammenhang eine Abfolge von Hochfrequenz- und magnetischen Gradientenfeldern, die vielfach in jeder Sekunde in vorgegebener Reihenfolge ein- und ausgeschaltet werden.
Zu Beginn steht ein Hochfrequenzimpuls der passenden Frequenz (Larmor-Frequenz), der sogenannte 90°-Anregungsimpuls. Durch diesen wird die Magnetisierung um 90° quer zum äußeren Magnetfeld ausgelenkt. Sie beginnt um die ursprüngliche Achse zu kreisen. Wie bei einem Kreisel, welcher angestoßen wird, nennt man diese Bewegung Präzession.
Das dabei entstehende Hochfrequenzsignal kann außerhalb des Körpers gemessen werden. Es nimmt exponentiell ab, weil die Protonenspins aus dem „Takt“ geraten („dephasieren“) und sich zunehmend destruktiv überlagern. Die Zeit, nach der 63 % des Signals zerfallen sind, nennt man $ T_{2} $-Relaxationszeit (Spin-Spin-Relaxation). Diese Zeit hängt von der chemischen Umgebung des Wasserstoffs ab; sie ist für jede Gewebsart unterschiedlich. Tumorgewebe hat z. B. meist eine längere $ T_{2} $-Zeit als normales Muskelgewebe. Eine $ T_{2} $-gewichtete Messung stellt den Tumor darum heller als seine Umgebung dar.
Durch einen geeigneten 180°-Rephasierungs-Hochfrequenzimpuls kann man bewirken, dass ein Teil der Dephasierung ($ T_{2}^{*} $-Dephasierung durch zeitlich unveränderliche Magnetfeldinhomogenitäten) zum Zeitpunkt der Messung wieder rückgängig gemacht wird, so dass wieder mehr Spins in der gleichen Phase sind. Die Signalstärke hängt dann nicht von der $ T_{2}^{*} $-Relaxationszeit ab, sondern nur noch von der $ T_{2} $-Relaxationszeit, die auf nicht-reversiblen Effekten beruht. Abhängig von den Sequenz-Parametern kann das Signal darüber hinaus auch von der sogenannten $ T_{1} $-Relaxationszeit (Spin-Gitter-Relaxation) abhängen, die ein Maß für die Geschwindigkeit ist, mit der sich die ursprüngliche Längsausrichtung der Spins zum äußeren Magnetfeld wieder einstellt. Die $ T_{1} $-Zeit ist ebenfalls gewebespezifisch, aber in der Regel deutlich (5× bis 20×) länger als die $ T_{2} $-Zeit. Die $ T_{1} $-Zeit von Wasser beträgt z. B. 2,5 Sekunden. $ T_{1} $-gewichtete Messsequenzen erlauben wegen des stärkeren Signals eine bessere Ortsauflösung, aber einen geringeren Gewebekontrast als $ T_{2} $-gewichtete Bilder.
Um eine $ T_{2} $-gewichtete Aufnahme zu erhalten, setzt man den Rephasierungsimpuls relativ spät, sodass die Spin-Spin-Relaxation Zeit hat, sich auszuwirken; man spricht von einer langen Echozeit TE. Auch der zeitliche Abstand bis zur nächsten Messung ist sehr lang, damit die Spin-Gitter-Relaxation in allen Geweben ebenfalls vollständig ablaufen kann und die Folgemessung überall wieder voll anregen kann. Man spricht von einer langen Repetitionszeit TR. Mit langer TE und langer TR bekommt man helles Signal nur von Geweben mit langer $ T_{2} $-Zeit. Für eine $ T_{1} $-Wichtung braucht man umgekehrt kurze TE und kurze TR, dann überwiegen die unterschiedlichen Spin-Gitter-Relaxationen verschiedener Gewebe im Bildkontrast. Eine Sequenz mit kurzer TE und langer TR erzeugt einen Kontrast, der sich nur nach der Konzentration der Protonen im Gewebe richtet, die praktisch der Anzahl der Wasserstoffatome entspricht. Diese sogenannten Proton density (PD)-gewichteten Aufnahmen haben einen flauen Kontrast, aber eine hohe Ortsauflösung. Es gibt zahlreiche Weiterentwicklungen dieser einfachen Spinecho-Sequenzen, etwa zur Beschleunigung, oder mit Unterdrückung des Fettgewebesignals. Eine klinische MRT-Untersuchung umfasst unterschiedlich gewichtete Bildserien und mehrere räumlichen Ebenen.
Um die Signale den einzelnen Volumenelementen (Voxeln) zuordnen zu können, wird mit linear ortsabhängigen Magnetfeldern (Gradientenfeldern) eine Ortskodierung erzeugt. Dabei wird ausgenutzt, dass für ein bestimmtes Teilchen die Larmorfrequenz von der magnetischen Flussdichte abhängt (je stärker der Feldanteil rechtwinklig zur Richtung des Teilchendrehimpulses, desto höher die Larmorfrequenz):
Die Messungen werden zeilenweise in eine Matrix („k-Raum“) eingetragen. Der k-Raum enthält in der Horizontalen also das Summensignal der horizontalen Ortsfrequenzen, und in der Vertikalen die Summe der vertikalen Ortsfrequenzen. Mit einer zweidimensionalen Fourier-Transformation werden die Beiträge der einzelnen Frequenzen getrennt, d. h. für jedes Voxel die Signalstärke ermittelt. Alle drei Gradienten zusammen bewirken eine Kodierung des Signals in drei Raumebenen. Das empfangene Signal gehört zu einer bestimmten Schicht des Körpers und enthält eine Kombination aus Frequenz- und Phasenkodierung, die der Computer mit einer inversen Fourier-Transformation in ein zweidimensionales Bild umrechnen kann.
Die magnetische Flussdichte $ B_{0} $ wirkt sich unmittelbar auf die Signalqualität der gemessenen Daten aus, da das Signal-Rausch-Verhältnis ungefähr proportional zur Flussdichte $ B_{0} $ ist. Deshalb gibt es seit den Anfängen der MRT einen Trend zu immer höheren Flussdichten, der den Einsatz tiefgekühlter supraleitender Spulen erfordert. Dadurch steigen die Kosten und der technische Aufwand bei höheren Flussdichten deutlich an. Besonders bei supraleitenden Spulen mit großen Öffnungen für die Untersuchung von Menschen entstehen inhomogene Feldkonfigurationen.
Niederfeldgeräte mit 0,1–1,0 T (Tesla) sind heute mit Permanentmagneten betrieben als Laborgeräte für technische oder Kleintieruntersuchungen im Einsatz. Bei Kryo-Elektromagneten in der Humanmedizin liegt die Flussdichte $ B_{0} $ für diagnostische Zwecke heute üblicherweise bei 1,5 T bis 3,0 T. Werden 3 T überschritten, dürfen die Patienten oder Probanden nur sehr langsam in den Bereich der supraleitenden Spule gefahren werden, da es infolge der entstehenden Wirbelströme im Gehirn sonst zu Blitzerscheinungen, Schwindel und Übelkeit kommen kann.
Etwa seit 2005 werden mit 7 Tesla höhere Flussdichten (Ultrahochfeld-Systeme) in der Humanmedizin erforscht. Seit 2017 sind diese Systeme für routinemäßige klinische Untersuchungen zugelassen.[14] Sie werden inzwischen in der medizinischen Praxis mehr und mehr genutzt. So können Erkrankungen des Gehirns, wie zum Beispiel die läsionale fokale Epilepsie sichtbar gemacht werden.[15]
An folgenden Institutionen wurden seit 2005 höhere Flussdichten als 3 Tesla eingeführt und erforscht:
Supraleitende Magnete bleiben bei einem Stromausfall stromführend und magnetisch, wodurch in einem Notfall (Gebäudebrand o. ä.) Rettungskräfte in Gefahr kommen können, indem ferromagnetische Ausrüstungsteile (Atemluftflaschen, …) in die Geräteöffnung gezogen werden.[35] Deswegen werden die Magnete bei der Auslösung eines Feueralarms automatisch gequencht, indem eine dafür vorgesehene Stelle der Spule durch Erwärmen normalleitend gemacht wird, woraufhin sich der Magnet über einen überbrückenden Lastwiderstand kontrolliert entlädt.
In der physikalischen, chemischen und biomedizinischen Forschung sind Hochfeldgeräte für Proben und Kleintiere mit bis zu 21 T üblich. Die Öffnung dieser Geräte ist mit einem Durchmesser von wenigen Zentimetern aber wesentlich kleiner als die der zuvor genannten Systeme. Mit solchen Hochfeldtomographen können z. B. Altersbestimmungen von Objekten durchgeführt werden, die chemisch oder radiologisch nicht möglich sind.
Die Signalstärke der Voxel wird in Grauwerten kodiert abgebildet. Da sie von zahlreichen Parametern abhängt (etwa der Magnetfeldstärke), gibt es keine Normwerte für das Signal bestimmter Gewebe und keine definierte Einheit, vergleichbar den Hounsfield-Units bei der Computertomographie. Die MR-Konsole zeigt nur arbiträre (willkürliche) Einheiten an, die diagnostisch nicht unmittelbar verwertbar sind. Die Bildinterpretation stützt sich stattdessen auf den Gesamtkontrast, die jeweilige Gewichtung (synonym Wichtung) der Messsequenz, und die Signalunterschiede zwischen bekannten und unbekannten Geweben. Im Befund wird deshalb bei der Beschreibung einer Läsion nicht von „hell“ oder „dunkel“ gesprochen, sondern von hyperintens für signalreich, hell und von hypointens für signalarm, dunkel.
Je nach Gewichtung kommen die verschiedenen Gewebe in charakteristischer Intensitätsverteilung zur Darstellung:
In der voxelbasierten Morphometrie werden MR-Bilder algorithmisch weiterverarbeitet, um daraus objektive Parameter zu ermitteln und statistisch zu analysieren. Diese Verfahren kommen insbesondere zum Einsatz, um bei der Untersuchung des menschlichen Gehirns die Größe bestimmter Hirnstrukturen zu erfassen.
Ein Vorteil der MRT gegenüber anderen bildgebenden Verfahren ist der bessere Weichteilkontrast. Er resultiert aus der Verschiedenheit des Fett- und Wassergehaltes unterschiedlicher Gewebearten. Dabei kommt das Verfahren ohne schädliche ionisierende Strahlung aus. Eine weitere Verbesserung ergibt sich durch zwei Aufnahmeserien, ohne und mit Gabe von Kontrastmitteln, so werden z. B. durch eine intensivere Weißfärbung Entzündungsherde oder auch vitales Tumorgewebe besser erkannt.
Neue, schnellere Aufnahmeverfahren ermöglichen das Scannen einzelner Schnittbilder in Bruchteilen einer Sekunde und liefern auf diese Weise eine wirkliche Echtzeit-MRT, die die bisherigen Versuche in Anlehnung an die konventionelle Fluoroskopie ersetzen. Somit können beispielsweise Bewegungen von Organen dargestellt oder die Position medizinischer Instrumente während eines Eingriffs überwacht werden (interventionelle Radiologie). Zur Abbildung des schlagenden Herzens (Abbildung rechts) werden bisher mit einem EKG synchronisierte Messungen benutzt, wobei Daten aus mehreren Herzzyklen zu vollständigen Bildern kombiniert werden. Neuere Ansätze für die Echtzeit-MRT versprechen dagegen eine direkte Herzbildgebung ohne EKG-Synchronisation sowie bei freier Atmung mit einer zeitlichen Auflösung von bis zu 20 Millisekunden.
Wesentlich ist auch die fehlende Strahlenbelastung, weshalb diese Methode bei Untersuchungen von Säuglingen und Kindern sowie während der Schwangerschaft gegenüber der CT bevorzugt angewandt wird.
Im Vergleich zur Computertomographie treten Artefakte (Bildstörungen) häufiger auf und stören die Bildqualität meist mehr. Typische MRT-Artefakte sind:
Abkürzung | Erklärung | Synonym |
---|---|---|
CE-FAST: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | GE mit SE-Anteil durch Ausnutzung der Gleichgewichtsmagnetisierung | PSIF, CE-GRASS |
CISS: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | Zwei GE-Sequenzen, deren Einzelsignale konstruktiv addiert werden | |
CORE: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | ||
CSFSE: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | ||
CSI: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | ||
DANTE: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | Serie von Pulsen | |
DE-FLASH: Doppelecho – {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | ||
DEFAISE: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | ||
DEFGR: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | ||
DESS: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | Doppel-GE-Sequenz, bei der die Signale zu einem addiert werden | |
EPI: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | Multiple GE nach einer Anregung; oft alle Rohdaten in einem Pulszug | |
EPSI: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | ||
FADE: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | ||
FAISE: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | ||
FAST: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | GE mit Ausnutzung der Gleichgewichtsmagnetisierung | FISP |
FEER: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | ||
FFE: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | GE mit Kleinwinkelanregung | FISP |
FISP: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | GE mit Ausnutzung der Gleichgewichtsmagnetisierung | |
FLAIR: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | SE mit vorgeschaltetem 180°-Puls, lange Inversionszeit zur Unterdrückung des Flüssigkeitssignals | |
FLAME: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | ||
FLARE: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | ||
FLASH: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | GE mit Kleinwinkelanregung, üblicherweise mit HF-Spoiling | T1-FFE, Spoiled GRASS, SPGR |
GRASS: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | GE mit Ausnutzung der Gleichgewichtsmagnetisierung | FISP, FAST |
GE: Gradienten-Echo | GRE | |
HASTE: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | Turbo-SE mit Half-Fourier-Akquisition, alle Rohdaten in einem Pulszug | |
IR: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | SE o.a. mit vorgeschaltetem 180°-Puls | |
IRABS: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | ||
LOTA: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | ||
MAST: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | ||
MPGR: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | ||
MP-RAGE: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | 3D-Variante von Turbo-FLASH | |
MSE: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | ||
PCMHP: Phasenkontrast-Multi-Herzphasen | ||
PSIF: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) (umgedrehtes FISP) | GE mit SE-Anteil durch Ausnutzung der Gleichgewichtsmagnetisierung | CE-FAST, CE-GRASS |
RARE: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | SE mit mehreren 180°-Pulsen, pro Echo eine Rohdatenzeile | TSE, FSE |
RASE: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | ||
RASEE: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | ||
SE: Spin-Echo | 90°–180°-Pulsfolge | |
SENSE: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | ||
SMASH: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | ||
SPGR: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | Gradienten-Echo mit Spoilern | FLASH |
STE: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | ||
STEAM: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | Pulsfolge mit drei 90°-Pulsen | |
SPIR: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | Fett-Unterdrückung | |
SR: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | SE o.a. mit vorgeschaltetem 90°-Puls | |
SSFP: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | ||
STIR: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | ||
TFL: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | ||
TGSE: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | Turbo-SE-Sequenz, bei der die SE von GE umgeben sind | GRASE |
TIRM: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | Turbo-SE mit vorgeschaltetem 180°-Puls, Darstellung des Absolutsignals | |
TRUE-FISP: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | GE mit Ausnutzung der Gleichgewichtsmagnetisierung, alle Gradienten sym. | SSFP |
TRUFI: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | ||
Turbo-FLASH: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | FLASH mit vorgeschaltetem 180°-Puls (IR) oder 90°-Puls (SR) | |
TSE: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | SE mit mehreren 180°-Pulsen, pro Echo eine Rohdatenzeile | FSE, RARE |
UTE: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | Sehr kurze Echozeiten im Mikrosekundenbereich | |
UTSE: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) | ||
VIBE: {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) |
Die Dauer einer MRT-Untersuchung hängt vom untersuchten Körperabschnitt, der klinischen Fragestellung und dem verwendeten Gerät ab. Die häufig durchgeführte Untersuchung des Kopfes dauert typischerweise 10–30 Minuten, eine Lendenwirbelsäulen-Untersuchung in der Regel etwa 20 Minuten. Je höher die gewünschte Detailauflösung, desto länger ist die zu veranschlagende Untersuchungszeit. Häufig werden zwei Aufnahmeserien erstellt, zuerst eine ohne Kontrastmittel, danach mit Kontrastmittel.
Die Untersuchungszeit muss bei der Auswahl des Diagnoseverfahrens berücksichtigt werden. Die Fähigkeit eines Patienten, während der erforderlichen Zeit still zu liegen, kann individuell und krankheitsabhängig eingeschränkt sein. Zur MRT-Untersuchung von Säuglingen und Kleinkindern ist gewöhnlich eine Sedierung oder Narkose erforderlich.
Neuere Entwicklungen versprechen, die Untersuchungszeit durch die parallele Aufnahme des MR-Signals mit zahlreichen Empfangsspulen deutlich zu verkürzen, sodass im Extremfall Aufnahmezeiten von unter einer Sekunde möglich sind.
Die Preise für eine MRT richten sich in Deutschland nach der Gebührenordnung für Ärzte und liegen je nach Organ und Aufwand der Untersuchung zwischen 140 und 1200 Euro.[46] Die Gesetzliche Krankenversicherung vergütet für ihre Versicherten nach dem Einheitlichen Bewertungsmaßstab, der deutlich niedrigere Preise (90–125 Euro) festlegt. Spezielle Verfahren (Herz-MRT, Ganzkörperuntersuchungen, Gefäßdarstellungen, Mamma-MRT) werden von den gesetzlichen Versicherungen nur zum Teil oder gar nicht bezahlt, z. B. weil der Nutzen der Untersuchung bislang nicht belegt ist oder weil die Nebenwirkungen in Form von Fehl- und Überdiagnosen zu hoch sind. Die Erstellungskosten liegen nach Angaben von Radiologen teilweise so hoch, dass die Geräte nur mit Mischkalkulationen und zusätzlichen Privatleistungsangeboten betrieben werden können.
2009 erhielten in Deutschland rund 5,89 Millionen Menschen mindestens eine Magnetresonanztomographie. Der stellvertretende Vorstandsvorsitzende der Barmer GEK, Rolf-Ulrich Schlenker, gab im Januar 2011 die geschätzten Jahresgesamtkosten für Computertomographie (CT) und MRT-Untersuchungen mit 1,76 Milliarden Euro an.[47]
Jahr | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
MRT-Untersuchungen | 6.003.944 | 6.260.293 | 6.894.000 | 7.353.000 | 7.945.000 | 8.624.000 | 8.874.000 | 9.270.000 | 10.018.000 | 10.637.000 | 11.322.130 | 11.812.067 |
MRT-Geräte | 1.640 | 1.762 | 1.845 | 1.938 | 2.060 | 2.211 | 2.317 | 2.305 | 2.332 | 2.470 | 2.747 | 2.840 |
Kursive Werte stellen Schätzwerte dar.
Einzelbild einer Magnetresonanz- tomographie eines menschlichen Gehirns; Animierte Version mehrerer transversaler Schnittebenen
MRT des menschlichen Herzens, Vierkammerblick; Animierte Version
MRT des menschlichen Herzens, Sagittal-Ansicht; Animierte Version
Für die Speicherung und Archivierung der Ergebnisse medizinischer bildgebender Verfahren hat sich der DICOM-Standard weitgehend durchgesetzt. Oft wird dem Patienten nach der Untersuchung ein Datenträger (z. B. CD-ROM oder DVD-ROM) mit seinen eigenen Schnittbildern mitgegeben, die er dann an den behandelnden Arzt weiterreicht. Häufig werden diese Bilder nicht in ein gebräuchlicheres Grafikformat wie z. B. JPEG umgewandelt, so dass der Patient zum Betrachten ein gesondertes Anzeigeprogramm benötigt. Oft ist ein solches auf dem Datenträger enthalten, das neben der Darstellung der DICOM-Bilder unter Umständen auch Zusatzfunktionen wie Vermessungen oder Lupenwerkzeuge anbietet.