Die Permutationsinvariante Quantentomographie (PI-Quantentomographie) ist eine Messmethode der Quantenmechanik zur teilweisen Bestimmung des Zustands eines aus vielen Teilsystemen bestehenden Quantensystems. Dabei wird für jeden möglichen Messwert die Wahrscheinlichkeit angegeben, dass gerade dieser eintritt, denn Quanten können immer nur mit bestimmten Werten ihrer physikalischen Größe auftreten.
Im Allgemeinen wird der quantenmechanische Zustand eines aus
Für große Systeme ist die Bestimmung all dieser Größen nicht mehr praktikabel und man ist an Verfahren interessiert, die es erlauben, mit begrenztem Aufwand eine Teilmenge davon zu bestimmen, die immer noch wichtige Informationen über den Zustand enthält. Die permutationsinvariante Quantentomographie ist ein solches vereinfachtes Verfahren. Es ist dadurch motiviert, dass man oft an Systemen interessiert ist, die aus vielen gleichartigen Teilsystemen bestehen (z. B. den Atomen in einem optischen Gitter oder in einer optischen Falle). Dann ist der Zustand des
Ist der Zustand nicht permutationsinvariant, misst die PI Quantentomographie bloß den „permutationsinvarianten Teil“ der Dichtematrix. Für das Verfahren genügt es, „lokale Messungen“ an Teilsystemen durchzuführen.[2] Das Verfahren wird z. B. zur Rekonstruktion der Dichtematrizen von Systemen mit mehr als 10 Teilchen beispielsweise für photonische Systeme oder Systeme kalter Atome verwendet.
PI-Zustandstomographie rekonstruiert den permutationsinvarianten Teil der Dichtematrix, welche durch die anteilsgleiche Mischung aller Permutationen der Dichtematrix definiert ist
wobei
Die Anzahl der Freiheitsgrade von
Freiheitsgrade aufzufinden sind.
Um diese Freiheitsgrade zu bestimmen, werden
lokale Messungen benötigt. Lokale Messung bedeutet in diesem Zusammenhang, dass der Operator
Während die Anzahl der Messungen polynomiell mit der Anzahl der Qubits skaliert – sofern der Zustand des Systems durch eine
Ein wichtiger Schritt in der Zustandsbestimmung besteht aus der Anpassung einer positiv semidefiniten Dichtematrix, die erst eine physikalische Interpretation erlaubt, an die durch statistische Fluktuationen und systematische Fehler gestörten Daten. Dieser Schritt stellt häufig einen Engpass im Gesamtprozess dar.
Allerdings lässt sich durch PI-Tomographie die Dichtematrix sehr viel effizienter speichern, wodurch auch das Fitten mithilfe konvexer Optimierung effizient möglich ist.[1] Dadurch wird das gesamte Vorgehen skalierbar. Darüber hinaus garantiert die konvexe Optimierung, dass es sich bei der Lösung um ein globales Optimum handelt.
PI-Tomographie wird üblicherweise in Experimenten mit permutationsinvarianten Zuständen verwendet. Handelt es sich bei der durch die PI-Tomographie erhaltenen Dichtematrix um einen verschränkten Zustand, weist auch das zugrundeliegende System Verschränkung auf. Aus diesem Grund können die üblichen Verschränkungsnachweise auf das Tomographieergebnis angewendet werden. Der so durchgeführte Verschränkungsnachweis setzt bemerkenswerterweise nicht voraus, dass das Quantensystem selbst permutationsinvariant ist.