Physikalische Größe | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name | dielektrische Leitfähigkeit oder Permittivität | |||||||||||||||
Formelzeichen | ||||||||||||||||
|
Die Permittivität ε (von lat. permittere: erlauben, überlassen, zulassen), auch dielektrische Leitfähigkeit, Dielektrizität, Dielektrizitätskonstante oder dielektrische Funktion genannt, gibt in der Elektrodynamik sowie der Elektrostatik die Polarisationsfähigkeit eines Materials durch elektrische Felder an.
Auch dem Vakuum ist eine Permittivität zugewiesen, da sich auch im Vakuum elektrische Felder einstellen oder elektromagnetische Felder ausbreiten können. Es handelt sich um eine Naturkonstante, nämlich die elektrische Feldkonstante
Hierbei ist der Faktor
Als Permittivität bezeichnet man eine Materialeigenschaft elektrisch isolierender, polarer oder unpolarer Stoffe, die auch Dielektrika genannt werden. Die Eigenschaft wirkt sich aus, wenn der Stoff mit einem elektrischen Feld wechselwirkt, etwa wenn er sich in einem Kondensator befindet.
In einem mit Material gefüllten Kondensator orientieren sich die Ladungsträger des Isolationsmaterials am Vektor des elektrischen Feldes und erzeugen ein Polarisationsfeld, das dem äußeren Feld entgegenwirkt und dieses schwächt. Dieses Phänomen der Feldschwächung lässt sich bei Annahme eines gegebenen elektrischen Erregungsfeldes
Aus der äußeren elektrischen Erregung ergibt sich dann mit der Permittivität
Bei konstanter elektrischer Erregung und steigenden Werten von
Unter der Einwirkung einer an den Kondensatorplatten angelegten festen Spannung U und dem elektrischen Feld
Die elektrische Suszeptibilität
Die Suszeptibilität ist dabei ein Maß für die Dichte der im Isolationsmaterial gebundenen Ladungsträger, bezogen auf die Dichte freier Ladungsträger.
Gemäß der Poisson-Gleichung der Elektrostatik kann die Permittivität außerdem als Proportionalitätsfaktor zwischen der Raumladungsdichte
Die Permittivität des Vakuums
Die Einheit der Permittivität kann ausgedrückt werden als:
Da die elektrische Polarisierbarkeit von Luft gering ist, kann die Permittivität der Luft (εr ≈ 1,00059) häufig in ausreichender Genauigkeit durch
Neben dem Coulomb-Gesetz, dem Ampèreschen Gesetz und dem Faradayschen Induktionsgesetz stellt der Zusammenhang zwischen μ0,
Abhängig vom verwendeten Einheitensystem verändert sich dabei die Darstellung der Permittivität
Die Verhältnisse im SI sind oben angegeben. In Einheitensystemen, die die elektromagnetischen Größen explizit auf mechanische Basisgrößen zurückführen, namentlich den verschiedenen Varianten des CGS-Einheitensystems, wird
Die relative Permittivität
Für gasförmige, flüssige und feste Materie ist
Die relative Permittivität ist ein Maß für die feldschwächenden Effekte der dielektrischen Polarisation des Mediums. In der englischsprachigen Literatur und daher auch in englischsprachig geprägten Fachbereichen wie der Halbleitertechnik wird die relative Permittivität auch mit
Als Synonym für die (relative) Permittivität ist die frühere Bezeichnung (relative) Dielektrizitätskonstante weiterhin in Gebrauch. Die Bezeichnung als Konstante ist unangemessen, da
Nur für isotrope Medien ist
Im Allgemeinen ist die relative Permittivität ein Tensor zweiter Stufe. So wird ihre Richtungsabhängigkeit widergespiegelt, die sich aus der kristallinen (oder anders geordneten) Struktur der Materie ergibt, z. B. für doppelbrechende Materialien, die u. a. bei Verzögerungsplatten angewendet werden. Die Tensoreigenschaft der Permittivität ist Grundlage der Kristalloptik.
Neben der „natürlichen“ Richtungsabhängigkeit können die Eigenschaften auch durch äußere Einwirkungen wie ein Magnetfeld (siehe Magnetooptik) oder Druck eine ähnliche Richtungsabhängigkeit erfahren.
Die Frequenzabhängigkeit (Dispersion) der Permittivität in Materie kann über den Lorentz-Oszillator recht gut modelliert werden und ist z. B. bei Wasser sehr stark ausgeprägt, vgl. Abbildung.
Wie die elektrische Permittivität hängt auch der Brechungsindex
mit
Hier sind
In Tabellenwerken ist in der Regel der Zahlenwert bei niedrigen Frequenzen (Größenordnung 50 Hz bis 100 kHz) angegeben, bei denen molekulare Dipole dem äußeren Feld noch nahezu unverzögert folgen können.
Genauso wie bei Gleichfeldern bilden sich in Dielektrika auch bei Wechselfeldern Polarisationsfelder, die aber der angelegten äußeren Feldgröße um einen gewissen Phasenwinkel nacheilen. D. h., die Orientierung der Ladungsträger im Dielektrikum bleibt in der Phase zeitlich hinter der Umpolarisierung des Wechselfeldes zurück.
Daher ist die relative Permittivität im Allgemeinen komplexwertig:
oder auch
Dabei können in Real- und Imaginärteil die Beiträge verschiedener Mechanismen im Material (z. B. Bandübergänge) angegeben und in ihrer Frequenzabhängigkeit addiert werden – eine detailliertere Darstellung findet sich unter elektrische Suszeptibilität.
Mit zunehmender Frequenz wird der Effekt des Nacheilens stärker. Indem sie isolierende Materialien schnell und wiederkehrend umpolarisieren, wandeln Wechselfelder hoher Frequenz elektromagnetische Feldenergie in Wärmeenergie um. Dieser Wärmeverlust wird dielektrischer Verlust genannt und durch den Imaginärteil
Eine weitverbreitete Anwendung, die das Phänomen der dielektrischen Erwärmung ausnutzt, ist der Mikrowellenofen.
Bei dielektrischer Erwärmung beträgt die Verlustleistungsdichte, bezogen auf das Materialvolumen
mit der Kreisfrequenz
Die mit der dielektrischen Erwärmung verbundene Verlustleistung entspricht bei Integration über den Erwärmungszeitraum exakt der inneren Energie, die dem Materialvolumen mit elektromagnetischen Wellen zugeführt wurde, wie in der Thermodynamik beschrieben.
Bei noch höheren Frequenzen, mit denen Ladungsträger im Bändermodell eines Kristalls angeregt werden können, wird ebenfalls Energie absorbiert (dielektrische Absorption).
Im Falle großer Feldstärken wird der Zusammenhang zwischen elektrischem Feld und Flussdichte nichtlinear. Entweder fasst man die Permittivität als feldstärkeabhängig auf
Temperaturabhängig ist beispielsweise die komplexwertige relative Permittivität von Wasser, deren Realteil bei einer Frequenz von 1 GHz und einer Temperatur von 20 °C einen Wert von etwa 80 annimmt, und bei 95 °C circa 52 beträgt.[2] Die Abnahme der Permittivität bei steigender Temperatur hängt mit dem zunehmenden Grad der Unordnung der Ladungsträger bei einer Zunahme der inneren Energie zusammen. Molekular betrachtet nimmt die Polarisierbarkeit aufgrund der zunehmenden Eigenbewegung der Ladungsträger bei höherer innerer Energie ab; makroskopisch betrachtet sinkt somit die relative Permittivität bei Temperaturerhöhung.
Medium | Medium | |||
---|---|---|---|---|
Vakuum | exakt 1 | Luft | 1,00059 | |
Aceton | 21,5 [4] | |||
Acrylglas | 3 [4] | |||
Acrylnitril-Butadien-Styrol (ABS) (30 °C) | 4,3 | Aluminiumoxid (Tonerde) | 9 | |
Ammoniak (0 °C) | 1,007 | Bariumtitanat | 103…104 | |
Benzol | 2,28 | Trockene Erde | 3,9 | |
Feuchte Erde | 29 | Germanium | 16,6 | |
Glas | 6…8 | Glycerin | 42,5 | |
Glimmer | 5…8 [4] | |||
Gummi | 2,5…3 | Holz (darrtrocken) | 2…3,5 | |
Kaliumchlorid | 4,94 | Methanol | 32,6 | |
Petroleum | 2 | Polyethylen (PE) (90 °C) | 2,4 | |
Polypropylen (PP) (90 °C) | 2,1 | Porzellan | 2…6 | |
Propanol | 18,3 | Paraffin | 2,2 | |
Papier | 1…4 | Polytetrafluorethylen (PTFE oder auch Teflon) |
2 | |
Polyethylen, Polypropylen | 2,3 [4] | Kabelpapier in Öl | 4,3 [4] | |
FR2, FR4 | 4,3…5,4 | Polystyrol-Schaum (Styropor ® BASF) |
1,03 | |
Polystyrol | 2,5 [4] | Polyvinylchlorid | 3…4 [4] | |
Porzellan | 5…6,5 [4] | Schellack | 3…4 [4] | |
Tantalpentoxid | 27 | Wasser (20 °C, 0…3 GHz) | 80 | |
Wasser (sichtbarer Bereich) | 1,77 | Wasser (0 °C, 0…1 GHz) | 88 | |
Eis (0 bis −50 °C, Niederfrequenz) | ≈ 90…150 |
Über die Kramers-Kronig-Relation kann der dispergierende Zusammenhang zwischen der komplexen Permittivität und den optischen Kenngrößen Brechungsindex und Absorptionskoeffizient k dargestellt werden:
Im Falle nichtmagnetischer Materialien (
Für die Berechnung theoretischer Spektren von Reflexion und Absorption, die mit gemessenen Spektren verglichen und angepasst werden können, sind die Komponenten des komplexen Brechungsindizes direkt aus Real- und Imaginärteil der Permittivität zu bestimmen:
Ebenfalls kann u. a. der Reflexionsgrad R berechnet werden für einen Strahl, der aus dem Vakuum (bzw. Luft) kommend senkrecht an einer Grenzfläche zu einem Medium mit Brechungsindex