Die Elektrostatik ist das Teilgebiet der Physik, das sich mit ruhenden elektrischen Ladungen, Ladungsverteilungen und den elektrischen Feldern geladener Körper befasst.
Die Phänomene der Elektrostatik rühren von den Kräften her, die elektrische Ladungen aufeinander ausüben. Diese Kräfte werden vom coulombschen Gesetz beschrieben. Ein klassisches Beispiel ist, dass geriebener Bernstein Teilchen anzieht (siehe Geschichte). Auch wenn die Kräfte klein erscheinen, ist die elektrische Kraft z. B. im Vergleich zur Gravitation außerordentlich stark. So ist die elektrische Kraft zwischen einem Elektron und einem Proton (beide bilden zusammen ein Wasserstoffatom) um ungefähr 40 Größenordnungen größer als ihre gegenseitige Massenanziehung.
Die Elektrostatik ist ein Spezialfall der Elektrodynamik für unbewegte elektrische Ladungen und stationäre, d. h. zeitlich gleichbleibende elektrische Felder. Die Elektrostatik findet ihr Analogon in der Magnetostatik, die sich mit stationären Magnetfeldern befasst, wie sie beispielsweise von zeitlich gleichbleibenden elektrischen Strömen erzeugt werden.
Schon im Altertum war bekannt, dass bestimmte Materialien wie beispielsweise Bernstein nach dem Reiben an einem Tuch oder Fell kleine leichte Teilchen anziehen (siehe Reibungselektrizität). William Gilbert setzte die Arbeiten von Petrus Peregrinus aus dem 13. Jahrhundert fort und fand heraus, dass auch andere Stoffe durch Reibung elektrisiert werden können und entwickelte das Versorium, eine frühe Bauform eines Elektroskops.[1] Er führte in seinem 1600 erschienenen Buch {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) (deutsch etwa: Über den Magneten, Magnetische Körper und den großen Magneten Erde) den dem Neulateinischen entlehnten Begriff „electrica“ für die Erscheinungen ein, die er im Zusammenhang mit dem Bernstein entdeckte, „elektron“ stammt vom griechischen Wort für Bernstein.[2]
Die von einer gegebenen Ladung Q auf ein Objekt ausgeübte Kraft ist proportional zur Ladung q des Objektes. Sie lässt sich also durch die Gleichung
Von einem äußeren elektrischen Feld werden in elektrischen Leitern und Isolatoren unterschiedliche Effekte hervorgerufen. Die freien elektrischen Ladungen in Leitern, z. B. die Leitungselektronen der Metalle, verschieben sich makroskopisch solcherart, dass das elektrische Feld im gesamten Inneren des Leiters verschwindet (siehe faradayscher Käfig). Dieses Phänomen wird Influenz genannt. Andererseits reagieren die lokal gebundenen Ladungen in einem Isolator, also die Elektronen und Kerne der Atome, durch eine gegenseitige Verschiebung, wodurch der Isolator polarisiert wird.
Das von einem elektrostatischen Feld E auf eine Probeladung q wirkende Kraftfeld F ist konservativ, das heißt, dass die potentielle Energie W der Probeladung im elektrostatischen Feld nur abhängig ist von der Position x der Probeladung, nicht aber vom Weg, auf dem die Probeladung nach x bewegt wurde. Das bedeutet auch, dass sich das elektrostatische Feld als Gradient eines elektrischen Potentials
Das Feld und damit auch das Potential einer beliebigen Ladungsverteilung in einem homogenen Isolator lässt sich leicht anhand der aus dem coulombschen Gesetz abgeleiteten Gesetzmäßigkeiten berechnen. Das Feld in einem Leiter verschwindet. Eine solche Berechnung ist bei räumlichen Anordnungen von Leitern, Nichtleitern und Ladungen nur in wenigen Fällen einfach.
Für den elektrostatischen Spezialfall stationärer magnetischer Felder (
Das elektrische Feld ist ein gerichtetes Vektorfeld. Für eine positive Ladung ist es genau von der Ladung weg, für eine negative Ladung zur Ladung hin gerichtet, was gleichbedeutend ist mit der Abstoßung gleichnamiger und der Anziehung entgegengesetzter Ladungen. Seine Stärke ist proportional zur Stärke der Ladung Q und umgekehrt proportional zum Quadrat des Abstands von Q. Der Proportionalitätsfaktor k (siehe Dielektrizitätskonstante) ist die Coulomb-Konstante
Das Maß der elektrischen Feldstärke in SI-Einheiten ist
Das von einer Menge an Ladungen, Qi, erregte Feld ist die Summe der Teilbeiträge (Superpositionsprinzip)
Oder im Fall einer kontinuierlichen Raumladungsverteilung, ρ, das Integral
Das gaußsche Gesetz beschreibt, dass der Fluss des elektrischen Feldes durch eine geschlossene Oberfläche A proportional zur Stärke der von der Oberfläche umschlossenen Ladung Q ist
Der gaußsche Integralsatz verknüpft Fluss und Divergenz eines Vektorfeldes:
woraus folgt, dass die Divergenz des elektrischen Feldes proportional zur Raumladungsdichte ist:
Ein konservatives elektrisches Feld kann durch den Gradienten eines skalaren elektrischen Potentials
Woraus die Poisson-Gleichung folgt:
Die Potentialdifferenz
Das Potential berechnet sich wie folgt:
Die Integrationsgrenzen ergeben sich aus der Wahl des Nullniveaus. Oft wird dies willkürlich in unendlicher Entfernung festgelegt. Eine Punktladung
Im Fall einer kontinuierlichen Raumladungsverteilung ist das elektrische Potential durch das folgende Integral gegeben:
Ist es nicht möglich, eine analytische Lösung des Integrals zu finden, so kann man
Das Konzept der Spannung stößt an seine Grenzen, wenn dynamische Vorgänge auftreten. Für veränderliche Magnetfelder lässt sich zwar noch eine Induktionsspannung definieren, jedoch ist diese nicht mehr über eine Potentialdifferenz definierbar. Auch ist die für eine Bewegung der Ladung von einem Punkt zum anderen benötigte Energie nur so lange gleich der Potentialdifferenz zwischen den Punkten, wie die Beschleunigung vernachlässigbar klein ist, da nach der Elektrodynamik beschleunigte Ladungen elektromagnetische Wellen aussenden, die ebenfalls in der Energiebilanz berücksichtigt werden müssen.
In einem Plattenkondensator besteht ein näherungsweise homogenes Feld. Ist die Ladung der einen Platte
Ist der konstante Plattenabstand
verrichtet werden. Der Energieerhaltung wegen muss diese Arbeit zu einer Erhöhung der Energie des Kondensators führen. Diese kann aber nur im elektrischen Feld stecken. Durch den Ladungsübertrag erhöht sich die Feldstärke um betragsmäßige
Auflösen nach
Nun ist aber
wobei
Vorkommen in der Natur und im Alltag:
Erzeugung hoher Spannungen durch Transport statischer Ladungen (in Forschung, Lehre, Industrie):
Anwendungen: