Physikalische Größe | |||||||
---|---|---|---|---|---|---|---|
Name | Polarisierbarkeit | ||||||
Formelzeichen | |||||||
|
Die Polarisierbarkeit
Je höher also die Polarisierbarkeit ist, desto leichter lässt sich ein Dipolmoment durch ein elektrisches Feld induzieren. Die Polarisierbarkeit setzt sich zusammen aus einem elektronischen (Verschiebung der Elektronenwolke relativ zu den Kernen) und einem ionischen Anteil (Verschiebung von positiven Ionen relativ zu negativen Ionen).
Die einfachste Beziehung zwischen induziertem Dipolmoment
wobei
Allerdings ist die oben genannte lineare, isotrope Beziehung nur eine Näherung. Die Polarisierbarkeit hängt (außer bei kugelsymmetrischen Molekülen wie CCl4) von der Richtung ab, daher ist
Man nennt
Das lokale elektrische Feld hat im Allgemeinen mehrere Beiträge, die sich vektoriell aufsummieren:
mit
Die Wellenfunktion des Moleküls wird durch das Anlegen eines elektrischen Feldes gestört (
Die Clausius-Mossotti-Gleichung bringt die mikroskopisch relevante Polarisierbarkeit mit der makroskopisch messbaren Permittivitätszahl
Wobei sich die Teilchendichte
mit
Die Polarisierbarkeit wirkt sich auf viele Eigenschaften des Moleküls aus, zum Beispiel der Brechungsindex und die optische Aktivität. Auch die Eigenschaften von Flüssigkeiten und Feststoffen (also Ansammlungen vieler Moleküle) werden durch die Polarisierbarkeit mitbestimmt, siehe London-Kraft. Um bei Molekülen Raman-Spektroskopie anwenden zu können, muss sich die Polarisierbarkeit bei Rotation oder Schwingung des Moleküls ändern.
In elektrischen Wechselfeldern (z. B. Licht) wird die Materie mit der Frequenz des schwingenden E-Feldes umpolarisiert. Für höhere Frequenzen (größer als die der typischen Molekülschwingungen, ab Infrarot-Bereich) kann die Ionenpolarisation wegen der größeren Trägheit der massiven Ionen nicht mehr folgen und vernachlässigt werden. Die wesentlich leichteren Elektronen folgen dem Wechselfeld auch noch bei höheren Frequenzen (etwa bis UV-Bereich).
Eine gute Näherung für diese Frequenzabhängigkeit (Dispersion) der Verschiebungspolarisation ist die Darstellung des Moleküls als gedämpfter harmonischer Oszillator, der durch das eingestrahlte E-Feld angetrieben wird (siehe auch Lorentzoszillator):
wobei
Der stationäre Zustand, der sich mit der Relaxationszeit
gelöst werden:
Das induzierte Dipolmoment des Moleküls ist definitionsgemäß gegeben durch das Produkt aus Ladung und Auslenkung:
Weiterhin soll gelten:
Damit erhält man die frequenzabhängige Polarisierbarkeit:
Diese ist eine komplexe Zahl, deren Realteil mit
Fallunterscheidung:
Im Allgemeinen haben reale Materialien mehrere Resonanzfrequenzen. Diese entsprechen Übergängen zwischen Energieniveaus des Atoms/Moleküls/Festkörpers. Man führt ein Gewicht
Den Zusammenhang zwischen Polarisierbarkeit und Permittivitätszahl liefert die Clausius-Mossotti-Gleichung (hier nur eine Resonanzfrequenz betrachtet):
Dabei ist
Somit hat man den Zusammenhang hergestellt mit dem komplexen Brechungsindex