Die Teilchendichte ist die Anzahl der in einem Volumen befindlichen Teilchen dividiert durch das Volumen. Ihr Formelzeichen ist meist n oder C.[1][2][3][4][5] Andere Benennungen durch Kombination der Wortteile Teilchen oder Partikel, evtl. -zahl bzw. -anzahl, und mit -dichte oder -konzentration, sind ebenfalls in Gebrauch. Die Teilchendichte ist eine intensive physikalische Größe.
Die Teilchendichte
Sofern das System nicht homogen ist, liefert diese Definition nur eine durchschnittliche Teilchendichte, in Teilvolumina des Systems können dann abweichende Werte auftreten.
„Teilchen“ können mikroskopische Objekte wie Neutronen, Atome, Moleküle, Ionen oder auch Formeleinheiten sein, ggf. aber auch mesoskopische Objekte wie Staubteilchen.
Da die Teilchenzahl eine Größe der Dimension Zahl darstellt und das Volumen als Kehrwert auftritt, ist die abgeleitete SI-Einheit der Teilchendichte m−3, in der Praxis werden oft auch dm−3, cm−3, l−1 und ml−1 benutzt.
Enthält ein System ein Gemisch verschiedener Teilchensorten, erhält man durch Summation der Teilchendichten aller einzelnen Teilchensorten die Gesamtteilchendichte des Systems.
Das Formelzeichen
Die Teilchendichte hat ein breites Anwendungsspektrum in der Physik, da sich aus ihr viele weitere Größen folgern lassen. So wird z. B. die Masse oder die Ladung von einzelnen Teilchen getragen, daher kann die Massendichte bzw. Ladungsdichte direkt aus der Teilchendichte (der Ladungsträger) abgeleitet werden. In Gasen hängen z. B. der Druck und die Dichte nahezu linear von der Teilchendichte ab.
Als bloße Konzentrationsangabe liefert die Teilchenzahlkonzentration
Die Teilchenzahlkonzentrationen für ein Stoffgemisch gegebener Zusammensetzung sind – wie alle volumenbezogenen Gehaltsgrößen (Konzentrationen, Volumenanteil, Volumenverhältnis) – im Allgemeinen von der Temperatur (bei Gasgemischen auch vom Druck) abhängig, so dass zu einer eindeutigen Angabe daher auch die Nennung der zugehörigen Temperatur (ggf. auch des Drucks) gehört. Im Regelfall verursacht eine Temperaturerhöhung eine Vergrößerung des Gesamtvolumens
Für Mischungen idealer Gase lässt sich aus der allgemeinen Gasgleichung ableiten, dass die Teilchenzahlkonzentration
In der folgenden Tabelle sind die Beziehungen der Teilchenzahlkonzentration
Massen-… | Stoffmengen-… | Teilchenzahl-… | Volumen-… | |
---|---|---|---|---|
…-anteil | Massenanteil w | Stoffmengenanteil x | Teilchenzahlanteil X | Volumenanteil φ |
…-konzentration | Massenkonzentration β | Stoffmengenkonzentration c | Teilchenzahlkonzentration C | Volumenkonzentration σ |
…-verhältnis | Massenverhältnis ζ | Stoffmengenverhältnis r | Teilchenzahlverhältnis R | Volumenverhältnis ψ |
Quotient Stoffmenge/Masse |
Molalität b | |||
spezifische Partialstoffmenge q | ||||
Die in vorstehender Tabelle in den Gleichungen beim Stoffmengenanteil x und Teilchenzahlanteil X auftretenden Nenner-Terme sind gleich der mittleren molaren Masse
Medium | Teilchendichte (in Teilchen / cm3 = Teilchen / ml) |
Teilchenart |
---|---|---|
Ethanol-Wasser-Mischung(a) | 2,1 · 1022 | Moleküle insgesamt |
6,0 · 1021 | Ethanol-Moleküle | |
1,5 · 1022 | Wasser-Moleküle | |
Luft (in Meereshöhe)(b) | 2,55 · 1019 | Moleküle/Atome insgesamt |
2,0 · 1019 | N2-Moleküle | |
5,3 · 1018 | O2-Moleküle | |
2,4 · 1017 | Ar-Atome | |
Luft (in 30 km Höhe) (vgl. Ozonschicht) |
3 · 1017 | Moleküle/Atome insgesamt |
davon etwa 5 · 1012 | O3-Moleküle | |
Blut | 5 · 109 | rote Blutkörperchen |
Trinkwasser | < 100 | aerobe Keime |
lv:Koncentrācija#Fizikā lietots jēdziens