Das Teilchen auf dem Ring ist eines der verschiedenen Modellsysteme aus der Quantenmechanik, welches zur Quantisierung der Energie führt. Es ist dem Teilchen im Kasten sehr ähnlich und wird daher auch als „Teilchen im kreisförmigen Potentialkasten“ bezeichnet.
Im Unterschied zum Teilchen im Kasten bewegt sich das Teilchen auf dem Ring jedoch nicht linear, sondern kreisförmig potentialfrei um einen bestimmten Punkt. Deshalb ist es günstiger mit Polar- als mit Kartesischen Koordinaten zu rechnen: die Wellenfunktion des Teilchens hängt nicht vom Abstand
Um die Wellenfunktionen und die Energien der Zustände des Teilchens auf dem Ring zu finden, ist es nötig die stationäre Schrödingergleichung im gegebenen Potential zu lösen. Dieses ist gegeben durch
Der winkelabhängige Anteil des Hamilton-Operators in Polarkoordinaten lässt sich als
schreiben, wodurch sich die zu lösende Schrödingergleichung ergibt:
Es handelt sich also um eine gewöhnliche, lineare, homogene Differentialgleichung 2. Ordnung, für die der Lösungsansatz lautet:
Durch Einsetzen in die Schrödingergleichung erhält man
Durch Umformen erhält man die Energien des Teilchens auf dem Ring:
Dass
was zu folgender Bedingung führt:
Dies ist nur erfüllt, wenn
Um die Differentialgleichung (bis auf einen Phasenfaktor) eindeutig zu lösen (der Konvention nach wählt man
Somit lautet die Eigenfunktion des Hamiltonoperators für ein Teilchen auf dem Ring:
Da Linearkombinationen von Eigenfunktionen zu demselben Energieeigenwert
als entartete Eigenfunktionen zum Eigenwert
Neben der Quantisierung führt dieses relativ einfach zu rechnende Beispiel auf das Konzept der Entartung. Da Zustände, bei denen sich
Eine Operatorgleichung wie die Schrödinger-Gleichung bedingt bestimmte Eigenschaften für ihre Lösung (bspw. Stetigkeit, Differenzierbarkeit, Periodizität). Dadurch wird der Raum möglicher Lösungen (hier Wellenfunktionen) eingeschränkt. In der obigen Darstellung ist bspw.
Unter der Annahme, dass
Dabei sind
Dann kann die Schrödinger-Gleichung zu einer Gleichung für die Fourier-Koeffizienten umgeschrieben als
Über die Eindeutigkeit der Fourier-Koeffizienten wird diese vereinfacht zu
Die Lösung hat dann die Form