Ein harmonischer Oszillator ist ein schwingungsfähiges System, das sich durch eine lineare Rückstellgröße auszeichnet. Für ein mechanisches System bedeutet dies, dass es eine Kraft gibt, die einer zunehmenden Auslenkung mit proportional anwachsender Stärke entgegenwirkt. Nach einem Anstoß von außen schwingt ein harmonischer Oszillator sinusförmig (= harmonisch) um seine Ruhelage, wobei die Schwingungsdauer unabhängig von der Größe der Auslenkung ist. Beispiele für harmonische Oszillatoren sind Federpendel, elektrische Schwingkreise und Stimmgabeln.
Der harmonische Oszillator ist ein wichtiges Modellsystem der Physik. Er ist durch nur zwei Parameter vollständig beschrieben, die Eigenfrequenz und die Dämpfung. Viele komplexere Systeme verhalten sich bei kleinen Auslenkungen näherungsweise wie harmonische Oszillatoren, z. B. das Fadenpendel. Der harmonische Oszillator in der Quantenmechanik ist eines der wenigen quantenmechanischen Systeme, das sich ohne Näherungen berechnen lässt.
Die Bezeichnung harmonischer Oszillator wird auch für gedämpfte harmonische Oszillatoren verwendet, auch wenn diese streng genommen keine harmonische Schwingung vollziehen, sondern eine gedämpfte Schwingung.
Mathematisch lässt sich jeder freie harmonische Oszillator durch die folgende Differentialgleichung beschreiben. Ausnahmen sind Oszillatoren in der Quantenmechanik und verwandten Theorien, bei denen Unschärferelationen berücksichtigt werden müssen.
Dabei sind
Der ungedämpfte harmonische Oszillator ist ein konservatives System. Dies bedeutet, dass die Energie der Schwingung erhalten bleibt. Es existiert daher für jedes Oszillator-Kraftfeld ein Potential.
Die graphische Darstellung des Potentials
In der Mechanik ist die Kraft
Dieses Konzept lässt sich auf mehrere Dimensionen übertragen. Das Potential hat hier die Form eines elliptischen Paraboloids. In n Dimensionen lässt es sich bei geeigneter Wahl der Koordinaten wie folgt schreiben:
In der Mechanik ist die Kraft auf ein Teilchen in einem solchen Potential durch den negativen Gradienten des Potentials gegeben.
Weil in den einzelnen Summanden keine Mischterme zwischen unterschiedlichen Richtungen vorkommen, lässt sich das Problem eines n-dimensionalen harmonischen Oszillators auf n eindimensionale Oszillatoren zurückführen. In der Quantenmechanik wird eine solche Eigenschaft Separabilität genannt. Es lässt sich folgern, dass bei einem harmonischen Oszillator nicht nur die Gesamtenergie, sondern auch die Energien für die Komponenten jeder einzelnen Richtung Erhaltungsgrößen sind.
Hängt der Wert des Potentials nur von der Entfernung zum Nullpunkt, nicht aber von der Richtung ab, so nennt man den Oszillator isotrop, andernfalls anisotrop. Bei einem isotropen Oszillator haben also alle Konstanten den gleichen Wert:
und Schwingungen in jeder Richtung sind harmonisch und haben dieselbe Frequenz.
Bei einem anisotropen Oszillator sind die Schwingungen in jeweils einer einzigen Koordinate Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x_i
harmonisch und haben eine von
Das Minimum dieses Potentials ist ein stabiler Fixpunkt des Systems. In der Mechanik nennt man diesen Punkt auch Ruhelage und die Kraft, die das Teilchen erfährt, Rückstell- oder Rückholkraft. Insbesondere erfährt ein in der Ruhelage liegendes Teilchen keinerlei Kraft, woraus sich auch der Name „Ruhelage“ ableitet. Die Namensgebung ist allerdings in dieser Hinsicht etwas irreführend: Zwar wirkt auf ein Teilchen in der Ruhelage keine Kraft, das Teilchen muss sich dort allerdings keinesfalls in Ruhe befinden. Im Allgemeinen nimmt es dort sogar seine Maximalgeschwindigkeit an.
Ein idealer harmonischer Oszillator, bei dem die Rückstellkraft für beliebig große Auslenkungen linear mit der Auslenkung ansteigt, existiert in der Natur nicht. Dennoch ist das Konzept für die Physik von fundamentaler Bedeutung, da es durch viele Systeme sehr gut angenähert wird, vor allem, wenn nur kleine Auslenkungen aus der Ruhelage betrachtet werden. Beschränkt man sich darauf, so können Potentiale, die ein lokales Minimum besitzen, in guter Näherung durch ein harmonisches Potential ersetzt und das gesamte Problem als harmonischer Oszillator beschrieben werden. Der Vorteil einer solchen harmonischen Näherung besteht darin, dass das Problem mit Standardmethoden der theoretischen Physik handhabbar wird und einfach zu interpretierende, analytische Lösungen liefert. In der nebenstehenden Abbildung wurde dies für ein Lennard-Jones-(12,6)-Potential (blaue Kurve) durchgeführt. Das Ergebnis (rote Kurve) ist wie ersichtlich nur für kleine Abstände vom Minimum eine brauchbare Näherung.
Ihre mathematische Begründung findet die harmonische Näherung in der Tatsache, dass die Potentiale in einer Taylorreihe entwickelt werden können. Ist ein Potential Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V gegeben und ist dieses hinreichend oft differenzierbar, so gilt nach dem Satz von Taylor:
wobei
Das heißt, bei genügend kleiner Auslenkung verhält sich der Oszillator harmonisch. Beispiele für Oszillatoren, die bereits bei mittleren Amplituden anharmonisch werden, sind das Fadenpendel und die transversal schwingende Saite.
Ein approximatives Lösungsverfahren, bei dem ein kompliziertes Problem zunächst auf ein analytisch lösbares zurückgeführt wird, um dann der Lösung zuvor ignorierte Einflüsse in Form von Störungen wieder hinzuzufügen, wird als Störungstheorie bezeichnet.
Ein mechanischer Oszillator besteht aus einem Körper der Masse und aus einer Kraft, die diesen zurücktreibt, wenn man ihn aus seiner Ruhelage auslenkt. Damit ein Oszillator ein harmonischer ist, muss die rücktreibende Kraft proportional zu dieser Auslenkung, also der Entfernung des Körpers von seiner Ruhelage, sein. In der Praxis wird eine solche Kraft meist durch Federn, wie bei einem Federpendel realisiert, oder durch die Gewichtskraft des Körpers, wie es beispielsweise bei einem Wasserpendel der Fall ist.
Ein harmonischer Oszillator wird aus seiner Ruhelage bewegt. Je weiter man ihn entfernt, desto größer wird die Kraft, die versucht ihn zurückzubewegen. Durch das Auslenken wird dem Oszillator potentielle Energie hinzugefügt. Potentiell bedeutet, dass die Energie verwendet wird, um beispielsweise eine Feder zu spannen und somit diese Energie in der Position des Oszillators gespeichert ist.
Wird der Oszillator dann freigelassen, so wird er auf Grund der Zugkraft der Feder beschleunigt. Er bewegt sich daher mit zunehmender Geschwindigkeit zur Ruhelage zurück. Wenn er dort angelangt ist, so hat der Oszillator seine maximale Geschwindigkeit erreicht. Die Feder ist entspannt und es wirkt keine Kraft mehr auf den Oszillator. Die potentielle Energie, die ihm zugeführt wurde, ist nun vollständig in kinetische Energie umgewandelt worden. Dies bedeutet, sie ist jetzt nicht mehr in der Position, sondern in der Geschwindigkeit des Oszillators gespeichert.
Aufgrund der Trägheit bewegt sich der Oszillator jedoch weiter. Dies führt dazu, dass die Feder, diesmal in anderer Richtung, wieder gespannt wird. Für das Spannen dieser Feder muss der Oszillator seine kinetische Energie aufwenden, um sich gegen die Kraft der Feder bewegen zu können. Er wird dadurch langsamer, bis er den Punkt erreicht, an dem er sich nicht mehr bewegt und die gesamte Energie wieder in Form von potentieller Energie vorliegt. Der Bewegungsablauf beginnt dann wieder von vorne.
Zeitpunkt [Anm. 1] |
Auslenkung |
potentielle Energie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{k}{2}x^2 |
Geschwindigkeit |
kinetische Energie |
---|---|---|---|---|
1 | ||||
2 | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 0 | |||
3 | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): -\sqrt{2E/m} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E | ||
4 | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 0 | ||
unveränderlich: Gesamtenergie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): E
, Masse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m
und Federkonstante |
Wir nehmen wie oben als Beispiel ein Federpendel. Die Masse des Körpers ist
Die Konstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k ist eine Federkonstante, die sich nach der Stärke der rücktreibenden Kraft bei einer festen Auslenkung richtet. Außerdem ist bekannt, dass die Beschleunigung eines Körpers proportional zu der auf ihn einwirkenden Kraft ist. Die Beschleunigung lässt sich als zweite Ableitung des Ortes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x nach der Zeit schreiben. Eine zeitliche Ableitung wird in der Physik häufig als Punkt über der Variablen gekennzeichnet:
Setzt man nun diese beiden Ausdrücke für die Kraft
Um die folgenden Rechnungen zu vereinfachen, substituiert man
Diese Gleichung lässt sich beispielsweise mittels eines Exponentialansatzes lösen. Als Ergebnis erhält man eine sinusförmige Funktion, auch harmonische Schwingung genannt:
Die Lösung enthält zwei Konstanten, die Amplitude
Die Sinusfunktion ist eine periodische Funktion, da ihre Werte sich in regelmäßigen Abständen wiederholen (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \sin(x)=\sin(x+2\pi)
). Daher führt der Oszillator eine periodische Bewegung aus. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \omega_0
bezeichnet die Eigenkreisfrequenz und Resonanzfrequenz des Oszillators. Sie bestimmt die Frequenz
Beim freien ungedämpften Oszillator bleibt die Energie erhalten, weil es sich um ein abgeschlossenes System handelt und nur konservative Kräfte auftreten. In der Gleichgewichtslage verschwindet die potenzielle Energie. Deshalb ist die Gesamtenergie gleich der maximalen kinetischen Energie:
Zu demselben Ergebnis kommt man, wenn man die Gesamtenergie über den Maximalwert der potenziellen Energie berechnet:
Eine mechanische Schwingung ist im Allgemeinen nicht reibungsfrei. Das heißt, die Schwingung verliert durch Reibung Energie und daher nimmt ihre Amplitude ab. Man spricht von einer Dämpfung der Schwingung, wodurch diese im Allgemeinen nicht mehr harmonisch ist. Ein solches System ist nicht mehr konservativ, sondern dissipativ. In der Differentialgleichung tritt dann zur beschleunigenden Kraft F eine Reibungskraft FR hinzu.
Das Vorzeichen der Kraft ist der Geschwindigkeit entgegengesetzt. Der genaue Ausdruck für FR hängt von der Art der Reibung ab. So kann der Betrag von F konstant sein, oder beispielsweise eine lineare oder quadratische Abhängigkeit von der Geschwindigkeit besitzen.
Im Falle von Gleitreibung ist der Betrag von FR konstant:
Ein Beispiel für eine lineare Abhängigkeit ist die Luftreibung bei kleinen Geschwindigkeiten. Dort kann die Luftströmung als laminar betrachtet werden. Damit ist sie nach dem Gesetz von Stokes proportional zur Geschwindigkeit, also zur ersten zeitlichen Ableitung der Auslenkung.
Im Fall einer solchen linearen Dämpfung nennt man den Proportionalitätsfaktor
Bei linearer Dämpfung kann die Reibung allgemein durch einen Dämpfungsterm
Dabei sind
Gibt man die Anfangsbedingungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x(0)
und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \dot x(0)
zum Zeitpunkt
mit
Für den Spezialfall
Für den aperiodischen Grenzfall
Eine Variante des klassischen harmonischen Oszillators stellt der Torsionsoszillator dar. Anstatt einer Schraubenfeder wird hier eine Torsionsfeder beziehungsweise ein Torsionsfaden verwendet. Anstatt von Translationsbewegungen kommt es dann zu Rotationsbewegungen. Die Berechnung erfolgt prinzipiell auf dem gleichen Weg. Es wird lediglich die Masse
Die Bewegungsgleichung des harmonischen Oszillators lässt sich auch mit der hamiltonschen Mechanik herleiten.[2] Wie oben betrachten wir eine Masse
Mit den kanonischen Gleichungen
gelangt man zur bereits oben beschriebenen Bewegungsgleichung.
Da die Gesamt-Energie
Die Gesamt-Energie des Systems ist proportional zu der von der Ellipse eingeschlossene Fläche
Im Fall eines gedämpften Oszillators bildet die Trajektorie anstelle einer Ellipse eine Spirale, die sich auf den Ursprung zubewegt.
Bei einem mehrdimensionalen harmonischen Oszillator lassen sich mittels Hauptachsentransformation Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): q_i und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): p_i entlang der Hauptachsen des Potentials wählen. Bei einer solchen Wahl entkoppeln die Bewegungsgleichungen der einzelnen Richtungen.
Zum Beispiel mit einem Hamilton-Ansatz wie im vorherigen Abschnitt erläutert, lässt sich das Kraftgesetz für einen n-dimensionalen harmonischen Oszillator formulieren als:
Man sieht, dass die Differentialgleichungen entkoppelt sind, also die Kraftkomponente in einer Dimension nur von der Auslenkung in dieser Dimension abhängt. Daher sind die Lösungen für die einzelnen Komponenten des Ortsvektors die Lösungen des entsprechenden eindimensionalen Problems:
Die Eigenwerte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \textstyle \lambda_i=\mathrm{i}\,\sqrt{\frac{k_i}{m}}
entsprechen dabei den Eigenkreisfrequenzen. Lassen sich alle
Bei einem anisotropen zweidimensionalen harmonischen Oszillator bewegt sich das Teilchen auf einer Lissajous-Kurve. Die Bewegung ist periodisch, wenn die Frequenzen der Schwingungen in je einer Koordinate in einem rationalen Verhältnis stehen. Andernfalls ist sie aperiodisch, d. h. sie kehrt niemals in den Anfangszustand zurück. Sie kommt ihm aber beliebig nahe.
Bei einem isotropen zweidimensionalen harmonischen Oszillator entartet die Lissajous-Kurve zu einem Kreis, einer raumfesten geraden Strecke oder einer raumfesten Ellipse. Ein Beispiel ist das sphärische Pendel bei kleinen Auslenkungen.
Die Bewegungsgleichungen sind
Die allgemeine Lösung lässt sich schreiben als:
wobei die Konstanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:):
Um die möglichen Bewegungsformen zu bestimmen, wird die allgemeine Lösung so ausgedrückt:
mit beliebigen Werten für die Amplituden Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): A_x,\, A_y und Phasenverschiebungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha_x,\, \alpha_y , die sich aus den Anfangsbedingungen ergeben. Es können sich verschiedene Bahnkurven bilden, die sämtlich den Ursprung als Mittelpunkt haben und mit der gleichen Frequenz durchlaufen werden:
Die beiden Koordinaten können zu einer einzigen komplexen Variablen
zusammengefasst werden. Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): u gilt dann die Differentialgleichung
mit der allgemeinen Lösung
Die beiden Konstanten
Einfache Spezialfälle sind:
Der elektrische Schwingkreis ist ein harmonischer Oszillator in der Elektrodynamik. Während in der Mechanik periodisch potentielle und kinetische Energie ineinander umgewandelt werden, werden im Schwingkreis die in einem Kondensator mit der Kapazität
Die Ähnlichkeit mit der Bewegungsgleichung des mechanischen Oszillators ist offensichtlich. Folgende Tabelle soll Analogien zwischen dem mechanischen und elektrischen Oszillator deutlich machen:
mechanisch (Translation) | mechanisch (Torsion/Rotation) | RLC–Reihenschwingkreis | RLC–Parallelschwingkreis |
---|---|---|---|
Auslenkung |
Winkel |
Ladung |
Spannung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): u |
Geschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \dot x \equiv v | Winkelgeschwindigkeit |
Stromstärke |
Änderungsrate der Spannung |
Masse |
Trägheitsmoment |
Induktivität |
Kapazität |
Federkonstante |
Torsionskonstante |
Reziproke Kapazität |
Reziproke Induktivität |
Dämpfungskonstante |
Dämpfungskonstante |
Widerstand |
Leitwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 1/R |
äußere Kraft Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): F(t) | äußeres Drehmoment |
externe Spannung |
Änderungsrate der externen Stromstärke |
Ungedämpfte Eigenfrequenz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f_0 : | |||
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac1{2\pi}\sqrt{\frac km} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac1{2\pi}\sqrt{\frac \mu I} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac1{2\pi}\sqrt{\frac1{LC}} | |
Differentialgleichung | |||
Da ein beliebiges Potential um eine stabile Gleichgewichtslage entwickelt werden kann und dann in 1. Näherung parabelförmig ist, ist der harmonische Oszillator in der Quantenmechanik ein Standard-Modell. Es ist eines der wenigen Systeme, für das eine analytische Lösung bekannt ist.
In der Quantenmechanik werden die Orts-, Impuls- und Energievariablen eines Teilchens durch Operatoren ersetzt. Der Hamiltonoperator für die Energie eines harmonischen Oszillators ist gegeben durch
Die Wellenfunktionen, mit denen sich die Aufenthaltswahrscheinlichkeiten des Teilchens berechnen lassen, sind Eigenfunktionen des Hamiltonoperators. Die Energieniveaus entsprechen den Eigenwerten.
Der Lorentzoszillator dient in der Optik als Modell um das Verhalten der Atome eines Festkörpers unter Einfluss einer elektromagnetischen Welle zu beschreiben. Zum Beispiel ist dann die Suszeptibilität, die dem Aufbau des Feldes entgegenwirkt, das Analogon zur Dämpfung durch Reibung in der Mechanik. Mit Hilfe des Lorentzoszillators lassen sich im Drudemodell optische Phänomene wie Doppelbrechung oder der komplexe Brechungsindex erklären.
Wenn einem Oszillator Energie zugefügt wird, spricht man von Anregung. Für den mechanischen Oszillator bedeutet dies, dass entweder eine externe Kraft
Eine erzwungene Schwingung wird durch eine unabhängige, meist periodische Kraft oder auch elektrische Spannung angeregt. Ein Beispiel hierfür ist eine Dipolantenne. Die Differentialgleichung, hier das Beispiel des gedämpften Oszillators, wird dadurch inhomogen:
Von einer selbsterregten Schwingung spricht man, wenn die Energiezufuhr durch ein geeignetes Steuerelement und den Schwingungsvorgang selbst gesteuert wird. Mathematisch lässt sich eine solche Energiezufuhr zum Beispiel durch einen speziellen Dämpfungsterm realisieren, bei dem die Dämpfung negativ werden kann. Ein solches System ist meist nichtlinear. Ein Beispiel hierfür ist der Van-der-Pol-Oszillator.
Wenn sich durch die Veränderung von Parametern, wie der Länge eines Pendels, die Eigenfrequenz
Einen mehrdimensionalen harmonischen Oszillator, bei dem die einzelnen Komponenten, also die harmonischen Oszillatoren entlang der Hauptachsen des Potentials, nicht unabhängig sind, sondern miteinander wechselwirken, bezeichnet man als gekoppelt. Dies führt dazu, dass die Energie der Schwingung der einzelnen Komponenten nicht mehr erhalten sein muss, da sie durch die Wechselwirkung von einer Komponente auf eine andere übertragen werden kann. Dadurch kommt es zu einer Form der Amplitudenmodulation.
Gekoppelte mechanische Oszillatoren nennt man auch gekoppelte Pendel. Eine mechanische Wechselwirkung zwischen zwei Pendeln wird beispielsweise erzeugt, indem man die Massen zweier getrennter Pendel mit einer Feder verbindet. Wenn mehrere gleiche Pendel, in einer Reihe angeordnet, jeweils mit ihren unmittelbaren Nachbarn über Federn verbunden sind, bezeichnet man die Anordnung als Schwingerkette. Ein interessantes Beispiel, bei dem die Energie zwischen einer Translationsbewegung und einer Rotationsbewegung wechselt, ist das Wilberforce-Pendel.
Mit Hilfe gekoppelter Oszillatoren können auch Gitterschwingungen beispielsweise in Kristallen modelliert werden. Hier sorgt die elektrische Wechselwirkung zwischen den Ionen, Molekülen oder Atomen des Kristallgitters für die notwendige Kopplung. Die quantenmechanische Betrachtung im Artikel Harmonischer Oszillator (Quantenmechanik) führt dann zu den Phononen.
Schwingungen eines Kontinuums, beispielsweise eine Saitenschwingung können mit Hilfe eines unendlich dimensionalen gekoppelten harmonischen Oszillators beziehungsweise unendlich vielen eindimensionalen gekoppelten harmonischen Oszillatoren beschrieben werden. Der Übergang zu unendlich vielen Oszillatoren wird nachfolgend für eine Longitudinalwelle durchgeführt. Das Verfahren lässt sich analog auch für Transversalwellen durchführen.
Wir nehmen das Beispiel von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n
gekoppelten Oszillatoren der Masse
Die Bewegungsgleichung des Systems lässt sich daraus herleiten als:
Diese Gleichung teilen wir durch
Durch einen Kontinuumsübergang wird der diskrete Index
Der Faktor
Die rechte Seite der Gleichung lässt sich umschreiben als:
Dies ist gerade der Differenzenquotient für die zweite Ableitung. Man erhält nämlich mit Hilfe einer Taylorentwicklung um
Man erhält so die Wellengleichung