Das hookesche Gesetz (nach Robert Hooke, der es 1676 erstmals als Anagramm und 1678[1] aufgelöst publizierte) beschreibt die elastische Verformung von Festkörpern, wenn deren Verformung proportional zur einwirkenden Belastung ist (linear-elastisches Verhalten). Dieses Verhalten („{{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value)“) ist typisch für Metalle, wenn die Belastung nicht zu groß wird, sowie für harte, spröde Stoffe oft bis zum Bruch (Glas, Keramik, Silizium).
Das hookesche Gesetz stellt den linearen Sonderfall des Elastizitätsgesetzes dar. Der Zusammenhang von Verformung und Spannung mit quadratischer oder höherer Ordnung kann hierbei nicht betrachtet werden. Außen vor bleiben also die nicht-linear elastische Verformung wie bei Gummi, die plastische Verformung oder die duktile Verformung wie bei Metall nach Überschreiten der Fließgrenze. Dennoch müssen Spannung und Verformung nicht in derselben Linie liegen: eine Verformung in
In den rheologischen Modellen wird das Gesetz durch das Hooke-Element berücksichtigt.
Das hookesche Gesetz besagt, dass die Dehnung
Die Federkonstante
Diese Eigenschaft ist maßgeblich zum Beispiel für die Verwendung von Metallfedern als Kraftmesser und in Waagen. Bei anderen Materialien – wie zum Beispiel Gummi – ist der Zusammenhang zwischen einwirkender Kraft und Ausdehnung nicht linear.
Das hookesche Gesetz findet nicht nur in der Mechanik, sondern auch in anderen Bereichen der Physik Anwendung. In der Quantenmechanik etwa lässt sich für hinreichend kleine
Die in einer Feder durch Dehnung entstehende potentielle Energie kann folgendermaßen berechnet werden. Gegeben ist eine Auslenkung vom Betrag
Dies ist das für viele Modellrechnungen wichtige harmonische Potential (proportional zu
Auf einen Stab der Länge
Dadurch ergibt sich eine Dehnung
Die Dehnung des Stabes hängt dabei von der wirkenden Kraft, hier der Spannung im Stab, ab. Die Proportionalitätskonstante
Durch Einsetzen der ersten beiden Formeln und Umstellen ergibt sich die folgende Darstellung:
Das hookesche Gesetz kann also dort angewendet werden, wo die wirkende Kraft nahezu linear von der Auslenkung oder Ausdehnung abhängt, und ist eine Verallgemeinerung des hookeschen Gesetzes für Federn.
Im allgemeinen Fall wird das hookesche Gesetz durch eine lineare Tensorgleichung (4. Stufe) ausgedrückt:
mit dem Elastizitätstensor
Aus energetischen Überlegungen ergibt sich, dass auch diese
Die maximal sechs Unabhängigen der beiden symmetrischen Tensoren für Dehnung und Spannung werden somit auf zwei sechskomponentige Vektoren verteilt (Voigtsche Notation). Bei
Im Spezialfall isotroper Medien reduziert sich die Anzahl der unabhängigen elastischen Konstanten von 21 auf 2. Wesentliche Eigenschaften der Deformation lassen sich dann durch die Querkontraktionszahl charakterisieren. Das hookesche Gesetz lässt sich dann darstellen in der Form
wobei
Häufig findet sich für das verallgemeinerte hookesche Gesetz für isotrope Medien auch eine Schreibweise mit Hilfe der Lamé-Konstanten:
oder ausgeschrieben:
Die Gleichung ist komponentenweise zu verstehen, z. B. gilt
Darin ist
Scheiben sind ebene Flächenträger, die per Definition nur in ihrer Ebene belastet werden. Stäbe und Balken sind schlanke Träger, bei denen zwei Abmessungen klein sind gegenüber der dritten axialen. Wenn keine Belastungen senkrecht zur Ebene bzw. Längsachse dieser Träger auftreten, herrscht in ihnen ein ebener Spannungszustand (ESZ), in dem alle Spannungskomponenten senkrecht zur betrachteten Ebene vernachlässigt werden können.
Flächenträger, die auch senkrecht zu ihrer Ebene belastet werden, bezeichnet man als Platten. Ist diese Platte so dick, dass sie durch die senkrecht auf sie wirkende Belastung nicht merklich zusammengedrückt wird, herrscht in ihrer Ebene ein ebener Verzerrungszustand (EVZ), in dem alle Verzerrungskomponenten senkrecht zur betrachteten Ebene vernachlässigt werden können.
Stäbe, Balken, Scheiben und Platten sind im Maschinenbau und Bauwesen weit verbreitete Konstruktionselemente. Daher lohnt es sich, die Elastizitätsbeziehung für den ESZ und EVZ aufzuschreiben.
Der ESZ entspricht in obiger Beziehung der Bedingung
bzw.
und
Im EVZ gilt
bzw.
mit