Das mathematische Pendel oder ebene Pendel ist ein idealisiertes Pendel. Hierbei kann eine als punktförmig gedachte Masse, die mittels einer masselosen Pendelstange an einem Punkt aufgehängt ist, in einer vertikalen Ebene hin und her schwingen, wobei Reibungseffekte, insbesondere der Luftwiderstand vernachlässigt werden. Das ebene Pendel ist ein Spezialfall des Kugelpendels, das sich auch in andere Raumrichtungen bewegen kann. Da die Bewegung des Pendelkörpers auf einem vertikalen Kreis erfolgt, wird es auch als Kreispendel[1] bezeichnet, obwohl damit häufiger das Kegelpendel gemeint ist.
In der Praxis kann man ein mathematisches Pendel dadurch annähern, dass man einen möglichst langen und dünnen Stab oder (falls die Auslenkung kleiner als 90° ist) einen dünnen Faden und einen möglichst kleinen und schweren Pendelkörper verwendet. Dass bei diesem Aufbau die Schwingungsweite (Amplitude) erst nach einer großen Anzahl Schwingungen spürbar zurückgeht, zeigt, dass hierbei die Reibung nur einen geringen Einfluss hat.
Pendel, welche die genannten Eigenschaften des mathematischen Pendels nicht nähererungsweise erfüllen, lassen sich durch das kompliziertere Modell des physikalischen Pendels beschreiben.
Die Schwingungsdauer ist unabhängig von der Masse des schwingenden Körpers. Bei kleinen Schwingungen ist die Schwingungsdauer auch nahezu unabhängig von der Größe der Amplitude. Hier zeigt das Pendel eine nahezu harmonische Schwingung, deren Schwingungsdauer ausschließlich von der Länge des Pendels und der herrschenden Schwerebeschleunigung bestimmt wird. Die Schwingungsdauer verlängert sich bis ins Unendliche, je näher die Amplitude an 180° herankommt. Größere Anregungen führen zu „Überschlägen“, sodass der Pendelkörper sich periodisch im Kreis bewegt.
Anhand der Kräfte wird im Folgenden die Bewegungsgleichung der Pendelschwingung aufgestellt.
Aufgrund der Schwerkraft (
Beim Betrachten eines schwingenden Fadenpendels zeigt sich, dass die Geschwindigkeit mit zunehmender Auslenkung abnimmt und nach Erreichen des Scheitelpunkts die Richtung wechselt. Die Geschwindigkeitsänderung bedeutet, dass die Pendelmasse eine Beschleunigung erfährt, genauer gesagt findet eine Tangentialbeschleunigung statt, da eine kreisförmige Bewegungsbahn vorliegt. Die Bewegungsgleichung lautet nach dem 2. Newtonschen Gesetz:
Die Tangentialbeschleunigung lässt sich durch die Winkelbeschleunigung
Bei der ungestörten Schwingung stellt die Rückstellkraft des Pendels die einzige äußere Kraft dar. Nach Umstellen und Kürzen der Masse entsteht eine nichtlineare Differentialgleichung zweiter Ordnung:
die sich mit Hilfe der Winkelgeschwindigkeit
Neben der Bewegungsgleichung mit dem Winkel
Anhand dieser holonomen Zwangsbedingung findet sich die unten stehende Vektordifferentialgleichung. Dabei stellt der erste Term die Zentripetalbeschleunigung und der zweite Term den an die Kreisbahn tangentiell wirkende Anteil der Schwerebeschleunigung dar. In dieser Darstellung entfällt die Länge des Pendelarmes
Für kleine Winkel gilt die Kleinwinkelnäherung:
Durch Substitution ergibt sich somit eine lineare Differentialgleichung zweiter Ordnung
welche der allgemeinen Form
Hierbei bezeichnen
Da Pendel in der Realität immer mehr als infinitesimal ausgelenkt werden, verhalten sie sich nichtlinear, d. h. Schwingungen mit endlicher Amplitude sind anharmonisch. Die allgemeine Differentialgleichung ist elementar nicht lösbar und erfordert Kenntnisse über elliptische Funktionen und elliptische Integrale.
Gegeben ist die Differentialgleichung:
Die Lösung für diese Differentialgleichung lässt sich über die Jacobische elliptische Funktion darstellen und sie lautet wie folgt:
Der maximale Ausschlagswinkel
Damit lässt sich die allgemeine Lösung für die Periode in eine Reihe entwickeln:
Alternativ lässt sich das auftretende elliptische Integral auch über das arithmetisch-geometrische Mittel
Außerdem ist die Dämpfung durch Reibungsverluste bei einem echten Pendel größer als Null, so dass die Auslenkungen ungefähr exponentiell mit der Zeit abnehmen.
Dass die Periodendauer nicht von
Der Winkel
mit
Durch numerische Integration der beiden Differentialgleichungen 1. Ordnung lässt sich eine Näherungslösung rekursiv berechnen. Mit dem einfachsten Integrationsverfahren (Euler explizit) und der Schrittweite
Für den Winkel kann die zuvor berechnete Winkelgeschwindigkeit benutzt werden:
Die Anfangswerte für Winkelgeschwindigkeit und Winkel sind dem Index
Die Genauigkeit der Lösung lässt sich durch Simulation über mehrere Perioden und Anpassung der Schrittweite überprüfen. Dieses Verfahren ist in der Physik auch als Methode der kleinen Schritte bekannt.
Beim mathematischen Pendel gilt der Energieerhaltungssatz der Mechanik. Auf dem Weg von der maximalen Auslenkung zur Ruhelage nimmt die potentielle Energie ab. Die mit ihr verbundene Gewichtskraft – genauer: deren tangentiale Komponente – verrichtet Beschleunigungsarbeit, wodurch die kinetische Energie zunimmt. Nach Durchschreiten des Minimums wirkt eine Komponente der Gewichtskraft entgegen der Bewegungsrichtung. Es wird Hubarbeit verrichtet.
Auch hieraus lässt sich die Differentialgleichung herleiten:
Die Summe ist zeitlich konstant, also
Diese Gleichung hat zwei Lösungen:
Anhand der Energieerhaltung kann die maximale Geschwindigkeit
Die maximale Geschwindigkeit wird im tiefsten Punkt der Pendelmasse erreicht, d. h. wenn der Faden senkrecht ist.
Der Zustand des Systems lässt sich durch ein Tupel
Es gibt zwei Positionen